Cho \(x>0\)thỏa mãn : \(x^2+\frac{1}{x^2}=7\).Cmr \(x^5+\frac{1}{x^5}\)là 1 số nguyên.Tìm số nguyên đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\Rightarrow\frac{2\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Cho số x khác 0 thỏa mãn \(x^2-5x+1=0\).Tính giá trị của \(Q=x^7-x^5+\frac{1}{x^7}-\frac{1}{x^5}+1\)
Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}\)
Áp dụng tc dãy tỉ số bằng nhau, ta được:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-\left(2x+3y-1\right)}{5+7-6}=\frac{\left(2x+3y\right)-\left(2x+3y\right)+\left(1-2+1\right)}{6}\)
\(=\frac{0+0}{6}=0\)
=>(2x+1)/5=0
2x+1=0
2x=0-1
x=-1/2(1)
=>(3y-2)/7=0
3y-2=0
3y=0+2
y=2/3(2)
Từ (1);(2)=> x+y=-1/2+2/3=-3/6+4/6=1/6=0,1(6)
mà làm để kết quả là 1 số nguyên nên x+y=0(sử dụng làm tròn)
mk ko chắc là đúng, mấy bữa nay chưa thi
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6}=\frac{0}{6}=0\)
=>2x+1=0=>2x=-1=>x=-1/2
3y-2=0=>3y=2=>y=3/2
=>x+y=-1/2+3/2=1
=>x+y=1
\(x^2+\frac{1}{x^2}=7\Leftrightarrow x^2+2+\frac{1}{x^2}=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2.\)Do x > 0 nên \(x+\frac{1}{x}\)>0 và \(x+\frac{1}{x}=3\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^3=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot x\cdot\frac{1}{x}\left(x+\frac{1}{x}\right)=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot3=27\Rightarrow x^3+\frac{1}{x^3}=18\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7\cdot18\Rightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\Rightarrow x^5+\frac{1}{x^5}+3=126\Rightarrow x^5+\frac{1}{x^5}=123.\)
Vậy \(x^5+\frac{1}{x^5}\)là 1 số nguyên và bằng: 123