K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó: ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

13 tháng 3 2022

Bạn có thể vẽ hình giúp mình dc ko

 

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔBAE=ΔBKE

b: ta có: ΔBAE=ΔBKE

=>EA=EK

Xét ΔEAM vuông tại A và ΔEKC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)(hai góc đối đỉnh)

Do đó: ΔEAM=ΔEKC

=>EM=EC

c: Ta có: ΔEAM=ΔEKC

=>AM=KC

Ta có: ΔBAE=ΔBKE

=>BA=BK

Xét ΔBMC có \(\dfrac{BA}{AM}=\dfrac{BK}{KC}\)

nên AK//MC

d: Ta có: NM=NC

=>N nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của CM(2)

Ta có: BA+AM=BM

BK+KC=BC

mà BA=BK và AM=KC

nên BM=BC

=>B nằm trên đường trung trực của MC(3)

Từ (1),(2),(3) suy ra B,E,N thẳng hàng

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó:ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

góc ABE=góc KBE

=>ΔBAE=ΔBKE

b: Xét ΔEAM vuông tại A và ΔEKC vuông tại K có

EA=EK

góc AEM=góc KEC

=>ΔEAM=ΔEKC

=>EM=EC và AM=KC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

d: BM=BC

Em=EC

=>BE là trung trực của MC

=>B,E,N thẳng hàng

10 tháng 11 2017

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có:

      AE = EH (chứng minh trên)

      Giải bài 8 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔAEK = ΔHEC (cạnh góc vuông – góc nhọn kề)

⇒ EK = EC (hai cạnh tương ứng)

7 tháng 5 2016

mk làm đc phần a vs b nhưng phần c mk ko làm đc 

a: Xét ΔABK vuông tại A và ΔEBK vuông tại E có

BK chung

\(\widehat{ABK}=\widehat{EBK}\)

Do đó: ΔABK=ΔEBK

b: Ta có: ΔABK=ΔEBK

nên KA=KE

c: Ta có: KA=KE

AB=EB

Do đó: BK là đường trung trực của AE

21 tháng 1 2022

a) Xét tam giác BAK và tam giác BEK:
Góc A=góc E
Góc B1=B2
BK - cạch chung
Vậy tam giác BAK= tam giác BEK (cạch huyền góc nhọn)

b)Theo CMa)vì tam giác BAK= tam giác BEK
Vậy KA=KE (2 cạnh tương ứng)

c)Xét tam giác AKM và tam giác EKC
Góc K1= góc k2
Vì 2 góc A1 và A2 là 2 góc kề bù mà A1=90độ => A2=90 độ (1)
Góc E1 và E2 là 2 góc kề bù mà E1=90độ =>E2 =90 độ (2)
Từ (1) và (2) ta có: góc A2= góc E2 (=90 độ)
Vậy tam giác AKM= tam giác EKC (cạnh huyền góc vuông)
=> MK=KC (2 cạnh tương ứng

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
7 tháng 3 2022

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE⊥⊥CK

 

tham khảo

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BECK