Cho tam giác ABC cân tại A, AH vuông góc BC tại H. N là trung điểm AC, BN cắt AH tại G. Trên tia đối NB lấy K cho NK=NG. Cm tam giác BKC là tam giác vuông. So sánh BH và AK.
Giúp m với:))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự kẻ hình nha
a) - Vì tam giác ABC cân tại A (gt)
=> AB = AC (định nghĩa)
góc ABC = góc ACB (dấu hiệu)
- Vì AH vuông góc với BC (gt)
=> tam giác ABH vuông tại H (tc)
tam giác ACH vuông tại H (tc)
- Xét tam giác vuông ABH và tam giác vuông ACH, có:
+ AB = AC (cmt)
+ Chung AC
=> tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
b) - Vì tam giác vuông ABH = tam giác vuông ACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> AH là đường trung tuyến tam giác ABC (dấu hiệu)
- Vì N là trung điểm của AC (gt)
=> BN là đường trung tuyến tam giác ABC (dấu hiệu)
Mà G là giao điểm của BN và AH (gt)
=> G là trọng tâm của tam giác ABC (tc)
- Xét tam giác ANG và tam giác CNK, có:
+ NG = NK (gt)
+ AN = CN (N là trung điểm của AC)
+ góc ANG = góc CNG (đối đỉnh)
=> tam giác ANG và tam giác CNK (cgc)
=> góc AGN = góc CKN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AG // CK (dấu hiệu)
c) - Vì G là trọng tâm của tam giác ABC (cmt)
=> BG = 2/3 BN (tc)
=> NG = 1/3 BN
Mà NK = NG (gt)
=> NK = 1/3 BN
=> NK + NG = 1/3 BN + 1/3 BN
=> GK = 2/3 BN
Mà BG = 2/3 BN (cmt)
=> GK = BG
=> G là trung điểm BK
a) trong ΔABC, có góc AHB là góc vuông
góc ABH là góc nhọn
⇒ góc AHB > góc ABH
⇒ AB > AH
b) M là trung điểm của AB và N là trung điểm của AC, mà AB = AC (2 cạnh bên của tam giác cân) ⇒ MB = NC
xét tam giác MBC và tam giác NCB, ta có :
MB = NC (cmt)
góc B = góc C (2 góc đáy của 1 tam giác cân)
BC là cạnh chung
⇒ tam giác MBC = tam giác NCB (c-g-c)
⇒ MC = NB (2 cạnh tương ứng)
c) xét tam giác NAG và tam giác NCK , ta có :
NA = NC (vì N là trung điểm của cạnh AC)
góc NAG = góc NCK (đối đỉnh)
NG = NK (gt)
=> tam giác NAG = tam giác NCK (c-g-c)
=> AG = CK (2 cạnh tương ứng)
a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)(ΔABM=ΔACN)
Do đó: ΔAHB=ΔAKC
=>HB=KC và AH=AK
c: Sửa đề: HB cắt KC tại O
Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
HB=KC
Do đó: ΔHBM=ΔKCN
=>\(\widehat{HBM}=\widehat{KCN}\)
Ta có: \(\widehat{HBM}=\widehat{KCN}\)
\(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)
\(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)
Do đó: \(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC
Xét ΔABO và ΔACO có
AO chung
AB=AC
BO=CO
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔANB và ΔAMC có
AN=AM(cmt)
\(\widehat{BAN}\) chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
hay \(\widehat{MBG}=\widehat{NCG}\)(3)
Xét ΔMBG có \(\widehat{MBG}+\widehat{MGB}+\widehat{BMG}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔNCG có \(\widehat{NCG}+\widehat{NGC}+\widehat{GNC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1), (2) và (3) suy ra \(\widehat{MGB}+\widehat{BMG}=\widehat{NGC}+\widehat{CNG}\)
mà \(\widehat{MGB}=\widehat{NGC}\)(hai góc đối đỉnh)
nên \(\widehat{BMG}=\widehat{CNG}\)
Xét ΔBMG và ΔCNG có
\(\widehat{BMG}=\widehat{CNG}\)(cmt)
BM=CN(cmt)
\(\widehat{MBG}=\widehat{NCG}\)(cmt)
Do đó: ΔBMG=ΔCNG(g-c-g)
Suy ra: GM=GN(Hai cạnh tương ứng)
hichic các bn ơiiiiiiii