\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{1}{8}\) +.....+\(\frac{1}{64}\)
giúp tớ với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=4^x\)
\(\Leftrightarrow\)\(\frac{1.2.3.4.5.....30.31}{4.6.8.10.12.....62.64}=4^x\)
\(\Leftrightarrow\)\(\frac{2.3.4.5.....30.31}{2\left(2.3.4.5.....30.31\right).64}=4^x\)
\(\Leftrightarrow\)\(\frac{1}{128}=4^x\)
\(\Leftrightarrow\)\(2^{2x}=2^{-7}\) ( trong sgk có phần đọc thêm nói về cái này nhé )
\(\Leftrightarrow\)\(2x=-7\)
\(\Leftrightarrow\)\(x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{4}{14}-\frac{2}{13}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{2}{6}+\frac{2}{14}-\frac{2}{26}}{\frac{4}{6}+\frac{4}{14}-\frac{4}{26}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{356}}{\frac{4}{4}-\frac{4}{16}+\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
\(=\frac{2\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}{4\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}\times\frac{3\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{356}\right)}{4\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
\(=\frac{2}{4}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{1}{2}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}\)
\(=\frac{8}{8}=1\)
\(\frac{\frac{109}{3.7.13}}{\frac{361}{3.14.13}}\)\(\frac{\frac{153}{256}}{\frac{51}{64}}\)+5/8
=\(\frac{327}{722}\)+5/8
=\(\frac{3113}{2888}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A=\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+\frac{2}{16}+\frac{2}{32}+\frac{2}{64}+\frac{2}{128}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(\Rightarrow A=1-\frac{1}{128}=\frac{128}{128}-\frac{1}{128}=\frac{127}{128}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+.....+\left(\frac{1}{64}-\frac{1}{128}\right)\)
\(=1-\frac{1}{128}=\frac{127}{128}\)
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\cdot\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}\cdot\frac{\frac{3}{4}\left(1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}\right)}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}\)\(+\frac{5}{8}\)
\(\frac{1}{2}\cdot\frac{3}{4}+\frac{5}{8}=\frac{3}{8}+\frac{5}{8}=1\)
\(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
=>\(B=\frac{1.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{3.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{14}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{\frac{4}{4}-\frac{4}{16}-\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3}{4}+\frac{5}{8}\)
=>\(B=\frac{1}{4}+\frac{5}{8}\)
=>\(B=\frac{2}{8}+\frac{5}{8}\)
=>\(B=\frac{7}{8}\)
l-i-k-e cho mình nhé bạn.
1/2+1/4+1/8+...+1/64
=1/2+1/22+1/23+...+1/26
Đặt 1/2+1/22+1/23+...+1/26=A
2A=1+1/2+1/22+...+1/25
=> 2A-A=1+1/2+1/22+...+1/25-(1/2+1/22+1/23+...+1/26)
=>A=1-1/26=63/64
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{64}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}=\frac{63}{64}\)