K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

23 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

=> ...............................................

23 tháng 11 2016

ko khó đâu

6 tháng 10 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)

\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)

\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)

\(\text{Vậy ta có điều phải chứng minh }\)

28 tháng 11 2017

ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)    (x;y;z khác 0)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\)  (vì x;y;z khác 0)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=>  x+y=0 hoặc y+z=0 hoặc z+x=0

mà x+y+z=2006 nên

z=2006 hoặc x=2006 hoặc y=2006 

=> đpcm

13 tháng 5 2018

        \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)   (do x+y+z = 2015)

\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

đến đây tự lm nốt nha

22 tháng 1 2017

H​d lấy hai cái nhân với nhau VP=1 ; VT=bt rút gọn=>đpcm