Trong tập hợp số tự nhiên, hãy tìm một dãy 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào
Mọi người ơi làm ơn giúp mình làm bài này với. Xin mọi người giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tập hợp số tự nhiên hãy tìm một dãy 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào?
1) Ta có :
+ a=1.2.3.4....101 chia hết cho 2 ; 2 cũng chia hết cho 2. Vậy 1.2.3.4...101+2 chia hết cho 2. Vì nó lớn hơn 2 nên nó là hợp số.
+a=1.2.3.4.....101 chia hết cho 3 ; 3 cũng chia hết cho 3. Vậy 1.2.3.4....101+3 chia hết cho 3. Vì nó lớn hơn 3 nên nó là hợp số.
........ ( cứ như thế )
+a=1.2.3.4....101 chia hết cho 101 ; 101 cũng chia hết cho 101. Vậy 1.2.3.4.....101+101 chia hết cho 101. Vì nó lớn hơn 101 nên nó là hợp số.
=> a=1.2.3.4......101 là hợp số.
k nha !!!!!
gọi BCNN(1;2;3;...;2000)=a
2000 số liên tiếp là:
a;a+1;a+2;...;a+1999
trong 2000 số đó thì a chia hết cho 1;2;3;...;1999
=>a;a+1;...;a+1999 là hợp số
=>có 2000 số tự nhiên liên tiếp là hợp số
gọi 30 số là \(a_1;a_2;a_3;...;a_{30}\)
Nếu luôn có 15 số chia hết cho 2
ta có 15 hợp số
giả sử \(a_1\)chẵn
nếu \(a_1\)chia hết cho 3
\(a_4;a_{10};a_{16};a_{22}:a_{28}\)là hợp số và là các số lẻ( \(a_1+3=a_4\) do \(a_1\)chẵn nên \(a_4\) lẻ )
Ta được thêm 5 hợp số không trùng với 15 hợp số ở trên tổng là 20 hợp số
Nếu \(a_1\)chia 3 dư 1
\(a_6;a_{12};a_{18};a_{24};a_{30}\)là hợp số
nên trong 30 số có ít nhất 20 hợp số(không trùng nhau nhé)
\(a_1\)chia hết cho 5 được thêm bạn xét tương tự như mik nhé ..........sẽ ra là thêm 2 hợp số chia hết cho 5 mà ko trùng với 20 số trên
Do dãy 2000 số tự nhiên liên tiếp đó không có số nguyên tố nào nên chúng là hợp số.
Coi dãy đó chứa các số tự nhiên liên tiếp từ a + 2 đến a + 2001 \(\left(a\in N\right)\)
Để tất cả các số trên là hợp số thì a phải chia hết các số từ 2 đến 2001, vì vậy a = 2001!
Thế vào các số trên, ta có:
- a + 2 = 2001! + 2 = 2 ( 3 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 3 = 2001! + 3 = 3 ( 2 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 4 = 2001! + 4 = 4 ( 2 * 3 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
...................................................................................................................................
- a + 2001 = 2001! + 2001 = 2001 ( 2 * 3 * 4 * ... * 2000 + 1 ) ( là hợp số ) - thoả mãn
Vậy trong tập hợp số tự nhiên, dãy có 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào là:
2001! + 2 ; 2001! + 3 ; 2001! + 4 ; .... ; 2001! + 1999 ; 2001! + 2000 ; 2001! + 2001