Tìm X :a) x>2x
b) (x-1)(x-2)>0
c)(x-2)^2(x+1)(x-4)<0
d)x^3<x^2
Mọi người giả nhnanh dùm tui nha chiều tui cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x+1=13-2x <-->6x=12 <-->x=2
b, (2x-5)(x-4)=0 <-->x=5/2 hoặc x=4
c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0 hoặc x=-2
d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4 TH2:3-x=9-2x -->x=6
a) Ta có: \(3\left(2-x\right)+1=4-2x\)
\(\Leftrightarrow6-3x+1-4+2x=0\)
\(\Leftrightarrow-x+3=0\)
\(\Leftrightarrow-x=-3\)
hay x=3
Vậy: S={3}
b) Ta có: \(2\left(x+4\right)=3-x\)
\(\Leftrightarrow2x+8-3+x=0\)
\(\Leftrightarrow3x+5=0\)
\(\Leftrightarrow3x=-5\)
hay \(x=-\dfrac{5}{3}\)
Vậy: \(S=\left\{-\dfrac{5}{3}\right\}\)
c) Ta có: \(7-3x=x-5\)
\(\Leftrightarrow7-3x-x+5=0\)
\(\Leftrightarrow-4x+12=0\)
\(\Leftrightarrow-4x=-12\)
hay x=3
Vậy: S={3}
d) Ta có: \(5x-\left(x-1\right)=7\)
\(\Leftrightarrow5x-x+1=7\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
Vậy: \(S=\left\{\dfrac{3}{2}\right\}\)
`2/(4-x^2)+1/(x^2-2x)=(x-4)/(x^2+2x)(x ne 0,+-2)`
`<=>(2x)/(4x-x^3)+(x+2)/(x^3-4x)=(x^2-6x+8)/(x^3-4x)`
`<=>-2x+x+2=x^2-6x+8`
`<=>x^2-7x+10=0`
`<=>x^2-2x-5x+10=0`
`<=>x(x-2)-5(x-2)=0`
`<=>(x-2)(x-5)=0`
Vì `x ne 2=>x-2 ne 0`
`=>x-5=0`
`=>x=5`
Vậy `S={5}`
b) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{2}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{x}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Suy ra: \(2x^2+2x+1-3x^2-x^2+x=0\)
\(\Leftrightarrow-2x^2+x+1=0\)
\(\Leftrightarrow-2x^2+2x-x+1=0\)
\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=-\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
\(a,\Rightarrow\left[{}\begin{matrix}x-1=2x\\1-x=2x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x+x-2=2\left(x\ge2\right)\\x+2-x=2\left(0\le x< 2\right)\\-x+2-x=2\left(x< 0\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(x\ge2\right)\left(tm\right)\\x=0\left(0\le x< 2\right)\left(tm\right)\\x=0\left(x< 0\right)\left(ktm\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a: Ta có: \(\left|x-1\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x\left(x\ge1\right)\\x-1=-2x\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
a) choA(x) = 0
\(=>-18+2x=0\)
\(=>2x=18=>x=9\)
b) cho B(x) = 0
\(=>\left(x+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a: (x-2)(x+2)-(x+1)2=1
=>\(x^2-4-\left(x^2+2x+1\right)=1\)
=>\(x^2-4-x^2-2x-1=1\)
=>-2x-5=1
=>-2x=6
=>\(x=\dfrac{6}{-2}=-3\)
b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)
=>\(\left(x-2\right)\left(x^2+x\right)=0\)
=>x(x+1)(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
c: 3x(x-1)+1-x=0
=>3x(x-1)-(x-1)=0
=>(x-1)(3x-1)=0
=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
a) \(x>2x\)
\(\Rightarrow x-2x>0\)
\(x\left(1-2\right)>0\)
\(-x>0\)
\(\Rightarrow x< 0\)
b) \(\left(x-1\right)\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
c) \(\left(x-2\right)^2.\left(x+1\right)\left(x-4\right)< 0\)
Mà \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)< 0\)
Mà \(x+1>x-4\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\)
\(\Rightarrow-1< x< 4\)
d) \(x^3< x^2\)
\(\Rightarrow x^3-x^2< 0\)
\(\Rightarrow x^2\left(x-1\right)< 0\)
\(x^2;x-1\)phải \(\ne\)0
Có \(x^2>0\); do đó \(x-1< 0\)
\(\Rightarrow x< 1\)