K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: (x-2)(x+2)-(x+1)2=1

=>\(x^2-4-\left(x^2+2x+1\right)=1\)

=>\(x^2-4-x^2-2x-1=1\)

=>-2x-5=1

=>-2x=6

=>\(x=\dfrac{6}{-2}=-3\)

b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)

=>\(\left(x-2\right)\left(x^2+x\right)=0\)

=>x(x+1)(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

c: 3x(x-1)+1-x=0

=>3x(x-1)-(x-1)=0

=>(x-1)(3x-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

7 tháng 12 2015

a) 3x^3-12x=0

3x(x^2-4)=0

3x(x-2)(x+2)=0

suy ra 3x=0       suy ra x=0

           x-2=0               x=2

           x+2=0              x= -2

b) (x-3)^2-(x-3)(3-x)^2=0

(x-3)^2-(x-3)(x-3)^2=0

(x-3)^2(1-x+3)=0

(x-3)^2(4-x)=0

suy ra x-3=0  suy ra x=3

          4-x=0             x=4

a) và b) đã nhé bạn

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

23 tháng 5 2018

\(A=x^2-2x+10\)

\(A=\left(x^2-2x+1\right)+9\)

\(A=\left(x-1\right)^2+9\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A\ge9\)

Dấu "=" xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy Min A = 9 khi x = 1

23 tháng 5 2018

\(B=x^2-5x-7\)

\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow B\ge-\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)

2 tháng 11 2018

\(x^2-3x+2.\left(x-3\right)=0\)

\(x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(x.\left(x-3\right)-3x+9=0\)

\(x.\left(x-3\right)-3.\left(x-3\right)=0\)

\(\left(x-3\right)^2=0=>x=3\)

2 tháng 11 2018

a,\(x^2-3x+2\left(x-3\right)=0.\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

10 tháng 9 2017

a/ Ta có : \(49.x^2-4=0\)

\(\Rightarrow49x^2=4\)

\(\Rightarrow x^2=\frac{4}{49}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{2}{7}\end{cases}}\)

b/ \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)

\(\left(x+3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)=11\)

\(\Rightarrow\left(x^2+2.3.x+3^2\right)-\left(x^2-2^2\right)=11\)

\(\Rightarrow x^2+6x+9-x^2+4=11\)

\(\Rightarrow6x+13=11\)

\(\Rightarrow6x=11-13\)

\(\Rightarrow x=\frac{-2}{6}=\frac{-1}{3}\)

c/ \(\left(2x+1\right)^2-\left(x-3\right)^2-3\left(x+5\right)\left(x-5\right)=5\)

\(\Rightarrow\left(2x+1\right)\left(2x+1\right)-\left(x-3\right)\left(x-3\right)-3\left[\left(x+5\right)\left(x-5\right)\right]=5\)

\(\Rightarrow\left(4x^2+2.2x+1\right)-\left(x^2-2.3x+9\right)-3\left(x^2-25\right)\)\(=5\)

\(\Rightarrow\left(4x^2+4x+1\right)-\left(x^2-6x+9\right)-\left(3x^2-75\right)=5\)

\(\Rightarrow4x^2+4x+1-x^2+6x-9-3x^2+75=5\)

\(\Rightarrow\left(4x^2-x^2-3x^2\right)+\left(4x+6x\right)+\left(1-9+75\right)=5\)

\(\Rightarrow10x+67=5\)

\(\Rightarrow10x=5-67=-62\)

\(\Rightarrow x=\frac{-62}{10}=\frac{-31}{5}\)

d/ \(\left(3x+1\right)\left(3x-1\right)=8\)

\(\Rightarrow9x^2-1=8\)

\(\Rightarrow9x^2=8+1=9\)

\(\Rightarrow x^2=\frac{9}{9}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Ai đó bấm hộ mình cái nút đúng đi!

10 tháng 9 2017

Ta có : 49x2 - 4 = 0

=> 49x2 = 4

=> x2 = 196

=> x2 = 142 ; (-14)2

=> x = 14 ; -14

11 tháng 11 2020

a)(x+2).(x+3)-(x-2).(x+5)=10

  ( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10

 x^2 +3x+2x+6-x^2 -5x+2x+10-10=0

 2x+6=0

2x=-6

x=-3

9 tháng 6 2016

a)

\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)

\(\Leftrightarrow3x^3-x^2+x-3x^2+x-1+4x^2-3x^3=\frac{5}{2}\)

\(\Leftrightarrow2x-1=\frac{5}{2}\Leftrightarrow2x=1+\frac{5}{2}=\frac{7}{2}\Leftrightarrow x=\frac{7}{4}\)

b) 

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)

\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

\(\Leftrightarrow8x+4-4x+1+8=11\Leftrightarrow4x+13=11\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\)

c)

\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow-4x+1+6x+9+245=0\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{255}{2}\).

a ) ( 3x2 - x + 1 ) ( x + 1 ) + x2 ( 4 - 3x ) = 5/2

=> 3x3 + 3x2 - x2 - x + x + 1 + 4x2 - 3x3 = 5/2

=> 6x2 + 1 = 5/2

=> 6x2 = 1,5

=> x2 = 0,25

=> x = 0,5