tìm x
djw3uirg43ht4ymk5j nmo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:`MN^2+MP^2=a^2+a^2=2a^2`
`NP^2=2a^2`
`=>MN^2+MP^2=NP^2`
`=>` tam giác MNP vuông cân
b)Xét tam giác vuông cân MNP có:
`MO` là trung tuyến
`=>MO` là đg cao
`=>MO bot NP`
`=>hat{MON}=90^o`
Vì `O` là trung đ NP
`=>NO=OP=(NP)/2=(asqrt2)/2`
`sin\hat{NMO}=(NO)/(MN)=(asqrt2/2)/a=sqrt2/2`
Tương tự với các cái còn lại.
a, do MN=MP=a=>\(\Delta MNP\) cân tại M
b, \(\Delta MNP\) cân tại M có MO là trung tuyến nên đồng thời là đường cao
\(=>MO\perp NP\)=>\(\Delta NOM\) vuông tại O
có: \(NO=\dfrac{NP}{2}=\dfrac{a\sqrt{2}}{2}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\sin\left(NMO\right)=\dfrac{NO}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
theo pytago\(=>OM=\sqrt{MN^2-ON^2}=\sqrt{a^2-\left(\dfrac{a}{\sqrt{2}}\right)^2}\)
\(=\sqrt{a^2-\dfrac{a^2}{2}}=\sqrt{\dfrac{a^2}{2}}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\cos\angle\left(NMO\right)=\dfrac{OM}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
\(=>\tan\angle\left(NMO\right)=\dfrac{ON}{OM}=\dfrac{\dfrac{a}{\sqrt{2}}}{\dfrac{a}{\sqrt{2}}}=1\)
tương tự \(=>\cot\angle\left(NMO\right)=1\)
a) Xét 2 tam giác vuông ΔMOK và ΔNOK:
Cạnh huyền: OK chung
ON = OM (GT)
=> ΔMOK = ΔNOK (c.h - c.g.v)
b/ Có: ΔMOK = ΔNOK (câu a)
=> KM = KN (2 cạnh tương ứng)
Tự vẽ hình nhé!
a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)
\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược
\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)
b, Gọi C là trung điểm dây AB ta có C cố định
(d) không qua O nên \(OC\perp AB\)
\(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)
\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM
\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn
Mà O và C cố định
Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)
c, Tứ giác MNOP là hình vuông
\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)
\(\Leftrightarrow\)Tam giác OMN vuông cân tại N \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)
\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)
d, từ nghĩ đã...
\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)
cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó
d, Làm tiếp:
Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'
OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))
\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)
\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\) ; \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)
Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)
\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP
Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)
Mặt khác : O , I cùng thuộc nửa mặt phẳng bờ d
Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R
a)Muốn tìm số hạng chưa bt ,ta lấy tổng trừ đi số hạng đã bt.
b)Muốn tìm số bị trừ,ta lấy hiệu cộng số trừ.
c)Muốn tìm số trừ ,ta lấy số bị trừ trừ đi hiệu
d)Muốn tìm thừa số chưa bt,ta lấy tích chia cho thừa số đã bt.
đ)Muốn tìm số bị chia,ta lấy số chia nhân thương
e)Muốn tìm số chia ,ta lấy số bị chia chia cho thương
a)Muốn tìm số hạng chưa biết ,ta lấy tổng trừ đi số hạng đã biết.
b)Muốn tìm số bị trừ,ta lấy hiệu cộng số trừ.
c)Muốn tìm số trừ ,ta lấy số bị trừ trừ đi hiệu
d)Muốn tìm thừa số chưa biết,ta lấy tích chia cho thừa số đã biết.
đ)Muốn tìm số bị chia,ta lấy số chia nhân thương
e)Muốn tìm số chia ,ta lấy số bị chia chia cho thương