C=1/100.99 - 1/99.98 - ................. -1/2.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
= \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\) ( viet nguoc lai cho de nhin)
= \(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
= \(-\frac{49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+...+1-\frac{1}{2}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)=-\frac{1}{2}\)
50 nếu ai thích sakura thì **** mình nếu ai thích sakura mà Ko **** mình thì chứng tỏ bạn Ko thích sakura
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-98}{100}=\frac{-49}{50}\)
Ủng hộ mk nha ^_-
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{97.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\frac{1}{100}-C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{100}-C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{100}-C=1-\frac{1}{100}\)
\(C=C=\frac{1}{50}-1=-\frac{49}{50}\)
C=1/100-(1/100.99+1/99.98+...+1/3.2+1/2.1)
=1/100-(1-1/2+1/2_1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-99/100
=1/100 chọn cho mình nha!