Tìm 2 chữ số của của A = 2052100+32016
Tìm a , b , c \(\in\)N*sao cho ab+ 1 chia hết cho c ; ac +1 chia hết cho b ; bc + 1 chia hết cho a
tìm các chữ số x; y sao cho
a, 51xy chia hết cho 6;7 cà 9
b , 1xy8 chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3+32+33)+(34+35+36)+...+(32005+32006+32007)
=3(1+3+32)34(1+3+32)+...+32005(1+3+32)
=3.13+3^4.13+...+3^2005.13
=13(3+34+...+32005)
tick mk nha
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)
Gỉai:
1.(ab + ba ) chia hết cho 9
=>9 : ab +ba
=>ab = một số ba=một số
=>Mà ba = 1 số
=>Vậy ba và ab vẫn =9
Hai số bằng nhau
Tương tự nhé
P.s:Not chắc