Tìm GTNN
a. (2x-1)2 +(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Bài 1:
\(N=2x^2+4y^2-2x-4y+15=2\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)+\dfrac{27}{2}=2\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
\(minN=\dfrac{27}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
Bài 2:
\(\Leftrightarrow4x^2+12x+9-25x^2+50x-25=0\)
\(\Leftrightarrow21x^2-62x+16=0\)
\(\Leftrightarrow\left(3x-8\right)\left(7x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2
minA = 2
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7
B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4
B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4
minB = -1/4
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4
C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥
≥ |x² + x + 1 + 12 - x² - x| = |13| = 13
minC = 13
đạt khi (x² + x +1) và (12 - x² - x) cùng dấu
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=>
{x² + x + 1 ≥ 0
{x² + x -12 ≤ 0
<=>
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3
tóm lại:
minC = 13 đạt khi -4 ≤ x ≤ 3
học tốt
a) \(A=\left(x-1\right)^2+\left(y-3\right)^2\ge0\) Do \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra khi
\(\Rightarrow\)\(\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x-1=0\\y-3=0\end{cases}\)\(\Rightarrow x=1;y=3\)
Vậy \(minA=0\) khi x=1;y=3
b) \(B=2x^2+y^2-2xy-2x+3=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(\Rightarrow B=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\x=1\end{cases}\)
Vậy minB =2 khi x=y=1
Không biết bạn có nhầm lẫn đề không, mình nghĩ phải là (2x-1)^2 + (x-3)^2. Mà thôi, mình sẽ giải đề của bạn.
(2x-1)^2 + x + 3
= 4x^2 - 4x + 1 + x + 3
=4x^2 - 3x + 4
=4x^2 - 2.2x.(3/4) + 9/16 + 55/16
=(2x-3/4)^2 + 55/16
GTNN là 55/16
Bạn tự giải thích nha.