K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

Ta có:

(n4 - n2).(n2 + 1)

= n2.(n2 - 1).(n2 + 1)

= (n2 - 1).n2.(n2 + 1)

Vì (n2 - 1).n2.(n2 + 1) là tích 3 số nguyên liến tiếp => (n2 - 1).n2.(n2 + 1) chia hết cho 3 (1)

Do n2 là số chính phương chia 5 chỉ có thể dư 0 ; 1 hoặc 4

Với mỗi trường hợp dư (n2 - 1).n2.(n2 + 1) đều chia hết cho 5 (2)

Do có 3 số n2 - 1; n2; n2 + 1 mà chỉ có 2 loại là số chẵn và số lẻ nên theo nguyên lí Đi-rích-lê có 2 số cùng chẵn hoặc cùng lẻ

=> n2 - 1 và n2 + 1 cùng chẵn hoặc cùng lẻ

+ Nếu n2 - 1 và n+ 1 cùng chẵn, tích 2 số này là tích 2 số chẵn liên tiếp nên chia hết cho 4

+ Nếu n2 - 1 và n2 + 1 cùng lẻ thì n2 chẵn => n2 chia hết cho 2 mà n2 là số chính phương => n2 chia hết cho 4 (3)

Từ (1); (2) ; (3), do 3; 4; 5 nguyên tố cùng nhau từng đôi một => (n2 - 1).n2.(n2 + 1) chia hết cho 60

=> (n4 - n2).(n2 + 1) chia hết cho 60 (đpcm)

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

29 tháng 10 2023

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

29 tháng 10 2023

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

1 tháng 8 2023

Đặt: \(A=n^8-n^6-n^4+n^2\)

\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)

\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)

\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3 

Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\) 

Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn 

Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8 

Còn  \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\) 

Ta có: 

\(\text{Ư}\text{C}LN\left(9;128\right)=1\)

Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)

9 tháng 7 2021

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

26 tháng 7 2018

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5