K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Làmmmm

1/ \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)(ĐKXĐ:x\(\ne0\), x\(\ne\frac{1}{2}\))

= \(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{\left(2x-1\right)2x}-\frac{1}{2x\left(2x-1\right)}\)

\(=\frac{2x-1-4x^2+2x+4x^2-1}{2x\left(2x-1\right)}\)

\(=\frac{4x-2}{2x\left(2x-1\right)}=\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)

KL:..............

31 tháng 3 2020

2/\(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)(ĐKXĐ : x\(\ne1\))

\(=\frac{x^2+2}{x^3-1}+\frac{2x-2}{x^3-1}-\frac{x^2+x+1}{x^3-1}\)

\(=\frac{x^2+2+2x-2-x^2-x-1}{x^3-1}=\frac{x-1}{x^3-1}=\frac{1}{x^2+x+1}\)

Kl:....................

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

19 tháng 3 2020

\(a.\frac{x}{4x^2y^3}và\frac{5}{6x^3y}\)

- MTC: 12x3y3

- NTP: 3x ; 2y2

\(\frac{x}{4x^2y^3}=\frac{x.3x}{4x^2y^3.3x}=\frac{3x^2}{12x^3y^3}\\ \frac{5}{6x^3y}=\frac{5.2y^2}{6x^3y.2y^2}=\frac{10y^2}{12x^3y^3}\)

\(b.\frac{2}{x^2+2xy}và\frac{1}{xy+2y^2}\)

- Ta có : x2 + 2xy = x ( x + 2y ) ; xy + 2y2 = y (x + 2y ).

-MTC : xy(x+2y)

- NTP : y ; x.

\(\frac{2}{x^2+2xy}=\frac{2.y}{y\left(x^2+2xy\right)}=\frac{2y}{x^2y+2xy^2}=\frac{2y}{xy\left(x+2y\right)}\\ \frac{1}{xy+2y^2}=\frac{1.x}{x\left(xy+2y^2\right)}=\frac{x}{x^2y+2xy^2}=\frac{x}{xy\left(x+2y\right)}\)

\(c.\frac{5}{6-2x}và\frac{3}{x^2-9};\frac{-5}{2x-6}và\frac{3}{x^2-9}\)

- Ta có : 2x - 6 = 2 ( x - 3 ) ; x2 - 9 = ( x + 3 ) ( x - 3 )

- MTC : 2 ( x - 3 ) ( x + 3 )

- NTP : x + 3 ; 2.

\(\frac{-5}{2x-6}=\frac{-5\left(x+3\right)}{\left(2x-6\right)\left(x+3\right)}=\frac{-5x-15}{2\left(x-3\right)\left(x+3\right)}\\ \frac{3}{x^2-9}=\frac{3.2}{2\left(x^2-9\right)}=\frac{6}{2\left(x-3\right)\left(x+3\right)}\)

19 tháng 3 2020

Câu hỏi là gì thế bạn??????

28 tháng 3 2020

Bài 1 :

a, Ta có : \(\frac{x}{4}=\frac{y}{5}=\frac{2x}{8}=\frac{2y}{10}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{2x}{8}=\frac{2y}{10}=\frac{2x+2y}{10+8}=\frac{33}{18}=\frac{11}{6}\)

=> \(\left\{{}\begin{matrix}x=\frac{22}{3}\\y=\frac{55}{6}\end{matrix}\right.\)

b, Ta có : \(\frac{x}{5}=\frac{y}{3}=\frac{z}{5}=\frac{2x^2}{50}=\frac{2y^3}{54}=\frac{2y^4}{162}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{5}=\frac{2x^2}{50}=\frac{2y^3}{54}=\frac{2y^4}{162}=\frac{2x^2+2y^3+2y^4}{50+54+162}=\frac{200}{266}\)

=> \(\left\{{}\begin{matrix}x=z=\frac{500}{133}\\y=\frac{300}{133}\end{matrix}\right.\)

28 tháng 3 2020

Bài 1:

a) Ta có: \(x:4=y:5.\)

\(\Rightarrow\frac{x}{4}=\frac{y}{5}.\)

\(\Rightarrow\frac{2x}{8}=\frac{2y}{10}\)\(2x+2y=33.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{8}=\frac{2y}{10}=\frac{2x+2y}{8+10}=\frac{33}{18}=\frac{11}{6}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=\frac{11}{6}\Rightarrow x=\frac{11}{6}.4=\frac{22}{3}\\\frac{y}{5}=\frac{11}{6}\Rightarrow y=\frac{11}{6}.5=\frac{55}{6}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\frac{22}{3};\frac{55}{6}\right).\)

Chúc em học tốt!

15 tháng 12 2018

\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

NV
23 tháng 11 2019

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

23 tháng 11 2019

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều