K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Trường hợp 1: m=0

Pt sẽ là -x+1=0

hay x=1(nhận)

Trườg hợp 2: m<>0

\(\text{Δ}=\left(m-1\right)^2-4\cdot2m\cdot\left(-3m+1\right)\)

\(=\left(m-1\right)^2+8m\left(3m-1\right)\)

\(=m^2-2m+1+24m^2-8m\)

\(=25m^2-10m+1=\left(5m-1\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Trường hợp 1: m=1

Pt sẽ là 3x-2=0

hay x=2/3(nhận)

Trường hợp 2: m<>1

\(\text{Δ}=\left(2m+1\right)^2-4\left(m-1\right)\left(m-3\right)\)

\(=4m^2+4m+1-4\left(m^2-4m+3\right)\)

\(=4m^2+4m+1-4m^2+16m-12\)

=20m-11

Để phương trình có nghiệm thì 20m-11>=0

hay m>=11/20

26 tháng 7 2017

Thay x = 2 vào phương trình 2mx2 – (2m + 1)x − 3 = 0

ta được: 2m.22 – (2m + 1).2 − 3 = 0

⇔ 4m – 5 = 0 ⇔ m = 5 4

Vậy  m = 5 4 là giá trị cần tìm

Đáp án cần chọn là: C

26 tháng 10 2018

Đáp án C

12 tháng 3 2021

\(PT\Leftrightarrow\left(x-2m+1\right)\left(x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2m-1\\x=m\end{matrix}\right.\).

+) TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=m\end{matrix}\right.\Rightarrow m^2=2m-1\Leftrightarrow m=1\).

+) TH2: \(\left\{{}\begin{matrix}x_1=m\\x_2=2m-1\end{matrix}\right.\Rightarrow\left(2m-1\right)^2=m\Leftrightarrow\left(m-1\right)\left(4m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{4}\end{matrix}\right.\).

Vậy...

 

16 tháng 2 2019

từ gt => (x1-1)(x2-1) >0
và pt có 2 nghiệm phân biệt

16 tháng 2 2019

Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)

                             \(\Leftrightarrow x>3\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

  

Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)             

                        \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)

                        \(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)

                         \(\Leftrightarrow m^2-3m-2m+3+1>0\)

                       \(\Leftrightarrow m^2-5m+4>0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)

Mà m > 3 nên m > 4

Vậy m > 4

22 tháng 12 2021

\(a,\Leftrightarrow\Delta'=1-\left(m-5\right)\ge0\\ \Leftrightarrow6-m\ge0\Leftrightarrow m\le6\\ b,\Leftrightarrow\Delta'=m^2-\left(m^2-2m+5\right)\ge0\\ \Leftrightarrow2m-5\ge0\Leftrightarrow m\ge\dfrac{5}{2}\)

a.  x2 + 2x + m - 5 =0 

b2 - 4ac = 2 bình - 4. 1 . (m - 5 ) = 0 

4 - 4m + 20 = 0 

-4m + 24 =0

suy ra m = - 6 

câu cx y như vậy :)))) 

7 tháng 6 2018

Phương trình m x 2 + (3m − 1)x + 2m − 1 = 0 (m  0) có

a = m; b = 3m – 1; c = 2m – 1

Vì a – b + c = m – 3m + 1 + 2m – 1 = 0 nên phương trình có hai nghiệm

x 1 = − 1 ;   x 2 = 1 − 2 m m

Đáp án: A

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

6 tháng 7 2018

 Với m ≠ -1

    Ta có: Δ   =   ( m   -   3 ) 2   ≥   0 , do đó phương trình luôn luôn có hai nghiệm x 1 ,   x 2

    Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.