(1-\(\frac{1}{21}\)) x (1-\(\frac{1}{28}\)) x (1-\(\frac{1}{36}\))x...x (1-\(\frac{1}{496}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* ĐK: \(x\ne0\)
Đề ra ...<=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
<=> \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{6}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{x+1}\left(1-\frac{1}{x}\right)=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{x-1}{x\left(x+1\right)}=\frac{1}{36}\)
<=> \(\frac{x-1}{x\left(x-1\right)}=\frac{x-1}{36.\left(x-1\right)}\)
=> x(x-1) = 36. (x-1) => x =36
\(\frac{2}{2}.\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
x+1=18
x=18-1
x=17
1/21 + 1/28 + 1/36 + ...+ 1/x(x+1)
=> 2/42 + 2/56 + 2/72 +....+ 2/x(x+1)
=> 2.(1/42 + 1/56 + 1/72 + ... + 1/x.(x+1))
=> 2 .(1/6.7 + 1/7.8 + 1/8.9 + ..+ 1/x.(x+1))
=> 2. ( 1/6 - 1/7 + 1/7-1/8 + ...+ 1/x - 1/x+1
=> 2 . (1/6 - 1/x+1)
=>1/3 - 2/x+1
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.......+\frac{2}{x\left(x+1\right)}=\frac{11}{40}\)
\(\Leftrightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+........+\frac{2}{x\left(x+1\right)}=\frac{11}{40}\)
\(\Leftrightarrow2.\left[\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+.......+\frac{1}{x\left(x+1\right)}\right]=\frac{11}{40}\)
\(\Leftrightarrow\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+......+\frac{1}{x\left(x+1\right)}=\frac{11}{80}\)
\(\Leftrightarrow\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+.......+\frac{1}{x\left(x+1\right)}=\frac{11}{80}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+.......+\frac{1}{x}-\frac{1}{x+1}=\frac{11}{80}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{11}{80}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{16}\)
\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\)
Vậy \(x=15\)
\(\frac{1}{21}+\frac{1}{28}+...+\frac{2}{x\left(x+1\right)}\)
\(=\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}\)
\(=2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{6}-\frac{1}{x+1}\right)\)
\(=2\left(\frac{x-5}{6x+6}\right)=\frac{2\left(x+5\right)}{2\left(3x+3\right)}=\frac{x+5}{3x+3}\)
1/21 + 1/28 + 1/36 + ... + 2/x(x + 1) = 2/9
1/2 × (1/21 + 1/28 + 1/36 + ... + 2/x(x + 1) = 1/2 × 2/9
1/42 + 1/56 + 1/72 + ... + 1/x(x + 1) = 1/9
1/6×7 + 1/7×8 + 1/8×9 + ... + 1/x(x + 1) = 1/9
1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + ... + 1/x - 1/x + 1 = 1/9
1/6 - 1/x + 1 = 1/9
1/x + 1 = 1/6 - 1/9
1/x + 1 = 3/18 - 2/18
1/x + 1 = 1/18
=> x + 1 = 18
=> x = 18 - 1
=> x = 17