Tìm x,y thỏa mãn: x2+y2=4-\(\frac{1}{x^2}\)-\(\frac{1}{y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :
\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)
\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)
Vậy min Q = 4 khi x = y = 1
A, B thuộc (P), (d) ?
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=k\left(x-1\right)+2\Leftrightarrow x^2-kx+\left(k-2\right)=0\).
Ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+2>0\forall k\) nên phương trình trên luôn có hai nghiệm phân biệt.
Theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1x_2=k-2\\x_1+x_2=k\end{matrix}\right.\).
Ta có \(x_1^2+y_1+x_2^2+y_2=14\)
\(\Leftrightarrow2x_1^2+2x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\Leftrightarrow k^2-2k-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=3\end{matrix}\right.\).
Vậy...
Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)
=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)
Tương tự như vậy thì ta có
A = xy + xz + yx + yz + zx + zy = 2
ĐKXĐ: \(x\ge1\)
Ta có: \(\frac{x^2-4}{x}+4+\frac{y^2-4}{y}+4=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Lại có: \(\frac{x^2-4}{x}+4=x+\frac{4x-4}{x}\ge4\sqrt{x-1}\)
Tương tự: \(\frac{y^2-4}{y}+4\ge4\sqrt{y-1}\)
Cộng từng vế: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8\ge4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Dấu "=" xảy ra khi: x=y=2
Vậy (x;y)=(2'2)
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0