Cho a,b,c thỏa mãn a,b,c khác 0 và ab+bc+ac=0. Tính A=(a+b)(b+c)(c+a)/abc. Ai giải giúp mình với, thanks nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)
CMTT:
\(a+c=-\frac{ac}{b}\)
\(b+c=-\frac{bc}{a}\)
Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)
T I C K ủng hộ nha mình cảm ơn
___________CHÚC BẠN HỌC TỐT NHA _____________________
Ta có:
\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)
\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)
\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)
\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Đồng thời:
\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự:
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Từ đó:
\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)
a+b+c = 0 => a+b=-c ; b+c=-a ; c+a=-b
=> (1+a/b).(1+b/c).(1+c/a) = a+b/b . b+c/c . c+a/a = -c/b . (-a)/c . (-b)/a = -abc/abc = -1
k mk nha
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)