Bài 8: Cho bốn điểm phân biệt A, B, C, D, trong đó không có ba điểm nào thẳng
hàng.
1) Vẽ được bao nhiêu đường thẳng đi qua hai trong số bốn điểm đã cho? Kể tên
các đường thẳng đó.
2) Có bao nhiêu tia trong hình đã vẽ được ở câu a)
3) Có bao nhiêu tia với gốc là một trong bốn điểm đã cho và đi qua một trong các
điểm còn lại? Kể tên các tia đó.
4) Có bao nhiêu đoạn thẳng có hai mút là hai trong bốn điểm đã cho. Kể tên các
đoạn thẳng đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a,
Có 6 đường thẳng đi qua hai trong bốn điểm đã cho. Đó là các đường thẳng: AB, AC, AD, BC, BD, CD.
b,
Có 12 tia với gốc là một trong bốn điểm đã cho và đi qua một trong 3 điểm còn lại. Đó là các tia: AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC.
c,
Có 6 đoạn thẳng có hai mút là hai trong bốn điểm đã cho. Đó là các đoạn thẳng: AB,AC,AD,BC,BD,CD.
Có \(C^2_4=6\left(đường\right)\) đi qua 2 điểm trong 4 điểm đã cho
bài 1:Qua điểm A và mỗi điểm B,C,D có ba đường thằng là AB, AC,AD. Qua điểm B và mỗi điểm C,D có hai đường thẳng là BC,BD (Không qua A). Qua điểm C và D còn lại có một đường thẳng CD (không đi qua A,B).
Chú ý: có thể trình bày ngắn gọn như sau : với 4 điểm A,B,C,D thì có 6 đường thẳng AB,AC,AD,BC,BD,CD
bài 2:Vì 3 điểm M,N,P thẳng hàng nên đường thẳng đi qua cả 3 điểm M,N,P trùng nhau và Q nằm ngoài đường thẳng trên nên kẻ được 3 đường thẳng lần lượt đi qua 3 điểm thẳng hàng.
Vậy ta có 4 đường thẳng: MP,QN,QM,QP(không kể MN, NP)
Có 6 đường thẳng đi qua hai trong bốn điểm đã cho Tên các đường thẳng đó là: AB, AC, AD, BC, BD, CD.
Ta vẽ được 6 đường thẳng từ 4 điểm đã cho gồm đường thẳng chứa AB, AC, AD, BC, BD, CD.
Cứ 2 điểm tạo thành 1 đoạn thẳng
Có 4 cách chọn điểm thứ nhất
Có 3 cách chọn điểm thứ hai
Số đoạn thẳng được tạo thành là: 4 x 3 = 12
Theo các trên mỗi đoạn thẳng được tính hai lần
Thực tế số đoạn thẳng được tạo là: 12 : 2 = 6 (đoạn thẳng)
kết luận:..