K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Ta thấy ngay DE = AH do EHDA là hình chữ nhật.

Gọi độ dài hai cạnh góc vuông lần lượt là x và y, khi đó ta có: \(AH=\frac{xy}{2a}\le\frac{x^2+y^2}{4a}=\frac{4a^2}{4a}=a\)

Vậy độ dài lớn nhất của DE là a, khi tam giác ABC vuông cân tại A.

16 tháng 9 2019

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

1 tháng 11 2017

Xét hai tam giác vuông ABH và CAH có:

∠ ABH = ∠ CAH (cùng phụ với góc  ∠ BAH)

Do đó △ ABH đồng dạng  △ CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ A H 2  = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

15 tháng 1 2017

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a: Xét tứ giác ADME có

gócADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: góc AHM=góc AEM=góc ADM=90 độ

=>A,D,H,M,E cùng thuộc đường tròn đường kính AM

mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)

nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ

c: DE=AM

AM>=AH

=>DE>=AH

Dấu = xảy ra khi M trùng với H

=>M là chân đường cao kẻ từ A xuống BC