Tìm 1 số nguyên chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, chia 7 dư 6; biết số đó nằm trong khoảng từ 800 đến 1000?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là a. => a+1 chia hết cho 2;3;4;5;6;7;8;9;10 => a+1 thuộc BC(2;3;4;5;6;7;8;9;10) nhưng vì a nhỏ nhất nên a+1 = BCNN(2;3;4;5;6;7;8;9;10)=2520 => a = 2520 -1 => a = 2519
Trả lời:
gọi số nguyên dương nhỏ nhất phải tìm là x
Theo đề cho thì x+1 = BCNN(2,3,4,5,6,7,8,9,10)=2520
x = 2519
Vậy số nguyên dương nhỏ nhất là 2519
Ta có : x chia cho 2 dư 1
x chia cho 3 dư 2
x chia cho 4 dư 3
x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)
x chia cho 6 dư 5
x chia cho 7 dư 6
x chia cho 8 dư 7
x chia cho 9 dư 8
Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...
Gọi x là số cần tìm
x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8
\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)
x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)
\(2=2\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(6=2\cdot3\)
\(7=7\)
\(8=2^3\)
\(9=3^2\)
\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\)
\(x+1=2520\)
\(x=2519\)
Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\)
\(x=\left\{2519;5039;7559;...\right\}\)
Gọi số đó là a
Vì a chia 2 dư 1; chia 3 dư 2; chia 4 dư 3; chia 5 dư 4; chia 6 dư 5; chia 7 dư 6 nên (a + 1) \(⋮\)2; 3; 4; 5; 6; 7
Số bé nhất chia hết cho các số từ 2 đến 7 là 420
số cần tìm là : 420 - 1 = 419
Đáp số : 419
ta biết số đó chia cho số nào cũng thiếu 1
số chia hết cho 4 thì chia hết cho 2 , số chia hết cho 6 thì chia hết cho 3 vậy
4 x 5 x 6 x7 = 840 vì thiếu 1 nên 840 - 1= 839
k mình nhaa^ ^
đáp số : 839
chúc bạn học tốt nha !
tại sao bạn ơi