chứng minh rằng tồn tại một bội của 17 có tận cùng là 219
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có một số chia hết cho 17 và có tận cùng là 219 nên đặt số đó bằng a219. Ta có:
a219 chia hết cho 17
a1000 + 219 chia hết cho 17
Mà 219 chia 17 dư 15
a1000 chia 17 dư 2
Mà 1000 chia 17 dư 14
a chia 17 dư 5
a = 5( tmđk)
Vậy số tìm được là 5129(đpcm)
Xét 18 số: 219, 219219,219219219,...,219219219219...219219
|19 cụm 219|
Vì khi chia 1 số cho 17 có 17 số dư mà có 18 số nên theo nguyên lý Đirichlê có ít nhất 2 số có cùng số dư khi chia cho 17=> Hiệu chúng chia hết cho 17
Gọi đó là 219219219219...219 và 219219219219...219
|m cụm 219| |n cụm 219| (m>n)
=> 219219219219...219 - 219219219219...219 chia hết cho 17
|m cụm 219| |n cụm 219|
=> 219219219...219000....0000 chia hết cho 17
|m-n cụm 219| |3n số 0|
=> \(219219219...219.10^{ }\) 3n chia hết cho 17
Mà (103n;17)=1 => 219219219...219 chia hết cho 17
Giả sử có một số chia hết cho 17 và có tận cùng là 219 nên đặt số đó bằng a219. Ta có:
a219 chia hết cho 17
a1000 + 219 chia hết cho 17
Mà 219 chia 17 dư 15
a1000 chia 17 dư 2
Mà 1000 chia 17 dư 14
a chia 17 dư 5
a = 5( tmđk)
Vậy số tìm được là 5129(đpcm)
vào đây bạn nhé
Câu hỏi của hoang trung hai - Toán lớp 6 - Học toán với OnlineMath
Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên 1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.
1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .
Có một bạn hỏi câu này và bạn đã trả lời ruif, còn hỏi làm gì nữa
có thằng đồng hoàn cảnh rùi