ve tam giac ABC va một đường thang ra song song với BC cắt AB và AC lần lượt ở d và e. Viết các cặp góc bằng nhau , bù nhau giải thích vì sao(hk tinh hai goc doi dinh, hai góc kề bù)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ADE}=\widehat{ABC}\) (góc đồng vị)
\(\widehat{AED}=\widehat{ACB}\) (góc đồng vị)
\(\widehat{ABC}+\widehat{BDE}=180^o\) (hai góc trong cùng phía bù nhau)
\(\widehat{ACB}+\widehat{CED}=180^o\) (hai góc trong cùng phía bù nhau)
\(\widehat{ABC}=\widehat{BDx}\) (góc sole trong)
\(\widehat{ACB}=\widehat{CEy}\) (góc sole trong)
Nhận xét: AD, BE và CF là các đường cao, chúng đồng quy tại một điểm.
Dễ dàng thấy được \(\widehat{ABC}=\widehat{ADE}\) và \(\widehat{ACB}=\widehat{AED}\) (vì với mỗi cặp thì hai góc của cặp đó là hai góc so le trong)
Vì \(\widehat{ADE}\) và \(\widehat{BDE}\) là hai góc kề bù nên \(\widehat{ADE}+\widehat{BDE}=180^o\)
Mà \(\widehat{ABC}=\widehat{ADE}\) nên \(\widehat{ABC}+\widehat{BDE}=180^o\), suy ra \(\widehat{ABC}\) và \(\widehat{BDE}\) là hai góc bù nhau.
Suy luận tương tự như trên, ta được \(\widehat{ACB}\) và \(\widehat{CED}\) là hai góc bù nhau.
a: Xét ΔAMI và ΔABC có
góc AMI=góc ABC
góc A chung
=>ΔAMI đồng dạng với ΔABC
Xét ΔBMN và ΔBAC có
góc B chung
góc BMN=góc BAC
=>ΔBMN đồng dạng với ΔBAC
=>ΔMBN đồng dạng với ΔABC
=>ΔMBN đồng dạng với ΔAMI
b: ΔAMI đồng dạng với ΔABC
=>AM/AB=AI/AC=MI/BC và góc AMI=góc ABC; góc AIM=góc ACB
ΔMBN đồng dạng với ΔABC
=>MB/BA=BN/BC=MN/AC và góc BMN=góc BAC; góc BNM=góc BCA
ΔAMI đồng dạng với ΔMBN
=>AM/MB=MI/BN=AI/MN và góc MAI=góc MBN; góc AMI=góc MBN; góc AIM=góc MNB
b: Xét ΔDBI có
\(\widehat{DBI}=\widehat{DIB}\)
nên ΔDBI cân tại D
Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
Ta có: DE=DI+IE
nên DE=DB+EC
Vậy: BDEC là hình thang có một cạnh đáy bằng tổng hai cạnh bên
Bạn tự vẽ hình nhé
Xét tứ giác EHDA có 3 góc vuông ( CAB = HDA = EHD = 90 độ ) nên AHDA là hình chữ nhật
b) HE song song với AC do cùng vuông với AB
HD song song với AB do cùng vuông với AC
c) Do EHDA là hình chữ nhật nên góc HEA = 90 độ và góc HDA = 90 độ
suy ra góc BEH = góc HDC = 90 độ
Do EH song song với AC nên góc BHE = góc C ( hai góc đồng vị )
Do HD song song với AB nên gocsDHC = góc C ( hai góc đồng vị )
d) Ta thấy: góc BHE + góc EHA = góc BHA = 90 độ ( do H vuông góc với BC )
góc DHA + góc EHA = góc EHD = 90 độ ( do HE vuông góc HD )
suy ra góc BHE = góc DHA
Tương tự ta có góc EHA = góc DHC ( cùng phụ với góc AHD )
e) Ta thấy góc BAH + góc HAC = 90 độ
góc ACB + góc HAC = 180 độ - góc AHC = 90 độ
Suy ra góc BAH = góc ACB
Đây là lời giải chi tiết đó bạn
DE // BC (theo cách vẽ)
⇒ ∠ I 1 = ∠ B 1 (hai góc so le trong)
Mà ∠ B 1 = ∠ B 2 (gt)
Suy ra: ∠ I 1 = ∠ B 2
Do đó: ∆ BDI cân tại D ⇒ DI = DB (1)
Ta có: ∠ I 2 = ∠ C 1 (so le trong)
∠ C 1 = ∠ C 2 (gt)
Suy ra: ∠ I 2 = ∠ C 2 do đó: ∆ CEI cân tại E
⇒ IE = EC (2)
DE = DI + IE (3)
Từ (1), (2), (3) suy ra: DE = BD + CE