Tìm gtnn của C= \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
Bạn tham khảo ở đây ^^
http://olm.vn/hoi-dap/question/624173.html
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)
2/ Ta có
\(\frac{x+y}{4}+\frac{x^2}{x+y}\)\(\ge\)x
\(\frac{y+z}{4}+\frac{y^2}{y+z}\ge y\)
\(\frac{z+x}{4}+\frac{z^2}{z+x}\ge z\)
Từ đó ta có VT \(\ge\)\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}\)= \(\frac{1}{2}\)
Đạt được khi x = y = z = \(\frac{1}{3}\)
Mình nghĩ đề bài đúng ra là phải tìm giá trị lớn nhất. Mình làm cả hai nhé ^^
Tói đây áp dụng bất đẳng thức Cô-si , ta được : \(\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}y}\le\frac{y-2+2}{2\sqrt{2}y}=\frac{\sqrt{2}}{4}\)
\(\Rightarrow C\le\frac{1}{2}+\frac{\sqrt{2}}{4}=\frac{2+\sqrt{2}}{4}\)
Vậy Max C = \(\frac{2+\sqrt{2}}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Thay điều kiện vào C , ta được Min C = 0 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)