So sánh 99^20 và 9999^10
Giúp tớ nhé!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khỏi cần nữa rồi...Mới nghĩ ra rồi .-.
Mà tôi không chơi kiểu tick đã rồi trả lời.Ok ?
9920 =(992)10=(99x99)10<(99x101)10=999910
vậy 992020 <999910
199^20=(200-1)^20=200^20-1^20
mà 200^20>200^15
\(\Rightarrow\)199^20>200^15
\(2^{225}=8^{75}< 9^{75}=3^{150}\)
\(2^{91}>2^{90}=32^{18}>25^{18}=5^{36}>5^{35}\)
\(99^{20}=\left(99.99\right)^{10}< \left(99.101\right)^{10}=9999^{10}\)
a, \(2^{225}=\left(2^3\right)^{75}\)
\(3^{150}=\left(3^2\right)^{75}\)
b,\(2^{91}=\left(2^{13}\right)^7\)
\(5^{35}=\left(5^5\right)^7\)
c,\(99^{20}=\left(99\cdot99\right)^{10}\)
\(9999^{10}=\left(99\cdot101\right)^{10}\)
9920=(992)10=980110.Do 9801 < 9999 nên 9920<999910
535=31257;221=87. Do 3125>8 nên suy ra 221<535
ta có: 1+\(\dfrac{-99}{100}=1-\dfrac{99}{100}=\dfrac{1}{100}\)
\(1+\dfrac{-100}{101}=1-\dfrac{100}{101}=\dfrac{1}{101}\)
Nhận thấy \(\dfrac{1}{100}>\dfrac{1}{101}\) \(\Rightarrow x>y\)
Phân tích ra số thập phân nhé bạn, hoặc là lấy x - y:
+ Nếu ra kết quả là số dương thì x > y.
+ Nếu ra kết quả là số âm thì x < y.
Giải:
Ta có:
\(x=-\dfrac{99}{100}\)
\(y=-\dfrac{100}{101}\)
Vì \(-\dfrac{99}{100}-\left(-\dfrac{100}{101}\right)=-\dfrac{1}{10100}\)
=> \(x< y\)