\(2016^{2017}̀\)và \(2017^{2016}\)(Giúp tớ đi)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

câu trả lời là ; <

27 tháng 2 2017

giải chi tiết giúp tớ đi

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

8 tháng 7 2017

Các câu dễ bạn tự làm nha:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2017^{2017}+1}{2017^{2018}+1}< 1\)

\(A< \dfrac{2017^{2017}+1+2016}{2017^{2018}+1+2016}\Rightarrow A< \dfrac{2017^{2017}+2017}{2017^{2018}+2017}\Rightarrow A< \dfrac{2017\left(2017^{2016}+1\right)}{2017\left(2017^{2017}+1\right)}\Rightarrow A< \dfrac{2017^{2016}+1}{2017^{2017}+1}=B\)\(A< B\)

5 tháng 2 2017

Vì 20162016 + 1 < 20162017 + 1

\(\Rightarrow\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+1+2015}{2016^{2016}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}\)

\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)

\(\Rightarrow\)A < B

5 tháng 2 2017

Ta có :

\(A=\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+2015+1}{2016^{2017}+2015+1}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016.\left(2016^{2015}+1\right)}{2016.\left(2016^{2016}+1\right)}\)

\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)

\(\Rightarrow A< B\)

8 tháng 5 2018

Ta có : 

\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)

\(\Rightarrow A>\frac{2015+2016}{2016+2017}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt !!! 

8 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}\)                                               \(B=\frac{2015+2016}{4033}\)

\(A=\frac{2015}{2016}+\frac{2016}{2017}\)                                           \(B=\frac{2015}{4033}+\frac{2016}{4033}\)

\(\Rightarrow A>B\)

16 tháng 9 2018

Ta có:\(\frac{2016}{2017}< 1\)

\(\frac{2017}{2018}< 1\)

\(\frac{2018}{2019}< 1\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>1+1+1=3\)

Vậy ......

17 tháng 9 2018

Tham khảo nha \(https://www.olm.vn/hoi-dap/question/1216047.html\)

15 tháng 4 2019

\(\frac{2016}{2017}< 1\)

15 tháng 4 2019

\(\frac{2016}{2017}< 1\)

\(\frac{2017}{2018}< 1\)

\(=>\frac{2017}{2018}+\frac{2016}{2017}< 1\)

6 tháng 5 2019

có B=2015+2016+\(\frac{2017}{2016}\)+2017+2018

B=\(\frac{2015}{2015+2016+2017}\)+\(\frac{2016}{2016+2017+2018}\)+\(\frac{2017}{2016+2017+2018}\)

\(\frac{2015}{2016}\)>\(\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}\)>\(\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}\)>\(\frac{2017}{2016+2017+2018}\)

⇒A>B

Chúc bạn học tốt :")

6 tháng 5 2019

Dễ thấy B<1.

\(A=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)\)\(=3-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy A>2.

Vậy A>B.

18 tháng 4 2017

a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)

\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)

\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)

Vậy A < B

b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)

\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)

\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)

Vậy M < N

24 tháng 4 2017

Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016

Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017

=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)

2016D = 2016 + 20162 + 20163 + ... + 20162017

=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)

\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)

Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)

= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015

= 20172017.20162017 - 20172017.2016 + 20162017.2015

= 20172017.(20162017 - 2016) + 20162017.2015 > 0

=> A > B

24 tháng 4 2017

Ta có 

\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)

\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)

\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)

\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)

Có 20172017>20162017 ;  20172016>20162016 ;  20172015>20162015;..... ; 2017>2016

=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)

=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)

=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)