Tính :
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+\frac{3}{30}+\frac{3}{42}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/6+3/12+3/20+3/30+3/42+3/56
<=>1/3xA=1/6+1/12+1/20+1/30+1/42+1/56
<=>1/3xA=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
<=>1/3xA=1/2-1/8=3/8
<=>A=3/8:1/3=9/8
Vậy A=9/8
Đặt 3 chung ra ta dc 1/6+1/12+...+1/56
A=1/2.3+1/4.3+...+1/87.8
A=1/2-1/3+1/3-1/4+...+1/7-1/8
Rút gọn ta dc A=1/2-1/8
tự quy đồng nhé
\(S=\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{42}\)
\(=1+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)+ \(\frac{1}{6}-\frac{1}{6}-\frac{1}{7}+\frac{1}{7}\)+ \(\frac{1}{8}-\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{9}{9}-\frac{1}{9}\)
\(=\frac{8}{9}\)
Chúc bạn học tốt !!!
\(S=\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(\frac{-9}{2}\right)\right]-\frac{5}{6}\)
\(S=\frac{3}{4}-\frac{1}{4}-\left[\frac{14}{6}+\left(\frac{-27}{6}\right)\right]-\frac{5}{6}\)
\(S=\frac{1}{2}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{3}{6}-\left(\frac{-13}{6}\right)-\frac{5}{6}\)
\(S=\frac{11}{6}\)
\(M=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{17}{72}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{108}{72}-\dfrac{60}{72}+\dfrac{42}{72}-\dfrac{17}{72}+\dfrac{-27}{60}+\dfrac{22}{60}+\dfrac{-52}{168}+\dfrac{45}{168}\)
\(=\dfrac{73}{72}-\dfrac{1}{12}-\dfrac{1}{24}=\dfrac{73}{72}-\dfrac{6}{72}-\dfrac{3}{72}=\dfrac{64}{72}=\dfrac{8}{9}\)
M=3/1.2-5/2.3+7/3.4-9/4.5+11/5.6-13/6.7+15/7.8+17/8.9
=(1/1.1+2/1.2)-(2/2.3+3/2.3)+(3/3.4+4/3.4)-(4/4.5+5/4.5)+...+(8/8.9+9/8.9)(phần ... là làm tương tự nhé)
=1/2+1-(1/3+1/2)+(1/4+1/3)-(1/5+1/4)+...+(1/9+1/8)(phần ... là làm tương tự nhé)
=1+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+...+(1/8-1/8)-1/9
=1+0+0+0+...+0-1/9
=1-1/9
=8/9
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)