cho tứ giác ABCD có đáy AB , CĐ . gọi E,F,I theo thứ tự là trung điểm của AD,BC,AC. Chứng minh rằng ba điểm E,I,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Hình thang ABCD có AB // CD
E là trung điểm của AD (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của hình thang ABCD
EF // CD (tỉnh chất đưòng trung bình hình thang) (1)
* Trong ∆ ADC ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ADC
⇒ EI // CD (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng
Xét tam giác ACD có AE= ED (gt)
AI= IC (gt)
=> EI là đường tb của tam giác ADC
=> AI// DC (1)
Xét tam giác ABC có AI= IC (gt)
BF= FC (gt)
=> FI là đường tb của tam giac ABC
=> FI// AB (2)
Ta có: ABCD là hình thang có AB// CD (3)
Từ (1), (2), (3) => EI// FI// AB// DC
=> EI trùng với FI (tiên đề Ơ clít)
=> E, F, I thẳng hang (t/c)
Hình thang ABCD có AB// CD
E là trung điểm của AD (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của hình thang ABCD
⇒ EF // CD (tính chất đường trung bình hình thang) (1)
Trong ∆ ADC có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ADC
⇒ EI // CD (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) theo tiên đề Ơclít đường thẳng EF và EI trùng nhau
Vậy E, I, F thẳng hàng
Cre:mạng :")
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của BD
Do đó: EK//AB
hay EK//CD
Xét ΔBDC có
K là trung điểm của BD
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔBDC
Suy ra: KF//DC
Ta có: EK//DC
KF//DC
mà KE và KF có điểm chung là K
nên E,K,F thẳng hàng
Ta có E và F là trung điểm của AD và BC
=> EF là ĐTB của hình thang ABCD
=> EF//AB//CD
Do F,K là trung điểm cuả BD và BC
=> FK là ĐTB của tam giác ADC
=> FK//CD
Do E và K là trung điểm của AD và BD
=> EK là ĐTB của tam giác ABD
=> EK//AB
Mà AB//CD
=>EF ; EK ; FK cùng // với AB
=> E ; F ; K thẳng hàng
Bài giải:
Ta có EA = ED, KB = KD (gt)
Nên EK // AB
Lại có FB = FC, KB = KD (gt)
Nên KF // DC // AB
Qua K ta có KE và KF cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.
\(\Delta ADB\) có:\(AE=DE\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow AB\) // \(EF\)(theo đlí 2 về đường trung bình của tam giác) (1)
\(\Delta BDC\) có:\(BK=KC\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow FK\) // \(CD\)(theo đlí 2 về đường trung bình của tam giác)
Mà \(CD\) // \(AB\Rightarrow FK\) // \(AB\) (1)
Từ (1) và (2), suy ra:
\(AB\) // \(EF,FK\)
\(\Rightarrow E,F,K\) thẳng hàng (theo tiên đề Ơclit )
Ta có `E,F,I` là trung điểm của `AD,BC,AC`
`=> EI,IF` là đường trung bình của `\Delta ADC` và `\Delta ACB`
`=> EI////CD , EI = 1/2CD`
`=> IF////AB,IF=1/2AB`
Xét ΔADC có
E là trung điểm của AD(gt)
I là trung điểm của AC(gt)
Do đó: EI là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: EI//DC
Xét ΔABC có
I là trung điểm của AC(gt)
F là trung điểm của BC(gt)
Do đó: IF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: IF//AB