K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Đường trung bình của tam giác, hình thang

5 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Hình thang ABCD có AB // CD

E là trung điểm của AD (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của hình thang ABCD

EF // CD (tỉnh chất đưòng trung bình hình thang) (1)

* Trong ∆ ADC ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của  ∆ ADC

⇒ EI // CD (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng

16 tháng 6 2021

Xét tam giác ACD có AE= ED (gt)

                                   AI= IC (gt)

=> EI là đường tb của tam giác ADC

=> AI// DC (1)

Xét tam giác ABC có AI= IC (gt)

                                  BF= FC (gt)

=> FI là đường tb của tam giac ABC

=> FI// AB (2)

Ta có: ABCD là hình thang có AB// CD (3)

Từ (1), (2), (3) => EI// FI// AB// DC

=> EI trùng với FI (tiên đề Ơ clít)

=> E, F, I thẳng hang (t/c)

16 tháng 6 2021

Hình thang ABCD có AB// CD

E là trung điểm của AD (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của hình thang ABCD

⇒ EF // CD (tính chất đường trung bình hình thang)  (1)

Trong ∆ ADC có:

E là trung điểm của AD (gt)

I là trung điểm của AC  (gt)

Nên EI là đường trung bình của ∆ ADC

⇒ EI // CD (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) theo tiên đề Ơclít đường thẳng EF và EI trùng nhau

Vậy E, I, F thẳng hàng

Cre:mạng :")

19 tháng 9 2017

Giải bài 25 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ΔABD có DE = EA và DK = KB

⇒ EK là đường trung bình của ΔDAB

⇒ EK // AB

+ Hình thang ABCD có: AE = ED và BF = FC

⇒ EF là đường trung bình của hình thang ABCD

⇒ EF // AB// CD

+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.

18 tháng 10 2021

Xét ΔDAB có

E là trung điểm của AD

K là trung điểm của BD

Do đó: EK//AB

hay EK//CD

Xét ΔBDC có 

K là trung điểm của BD

F là trung điểm của BC

Do đó: KF là đường trung bình của ΔBDC

Suy ra: KF//DC

Ta có: EK//DC

KF//DC

mà KE và KF có điểm chung là K

nên E,K,F thẳng hàng

21 tháng 10 2017

Ta có E và F là trung điểm của AD và BC

=> EF là ĐTB của hình thang ABCD

=> EF//AB//CD

Do F,K là trung điểm cuả BD và BC

=> FK là ĐTB của tam giác ADC

=> FK//CD

Do E và K là trung điểm của AD và BD

=> EK là ĐTB của tam giác ABD

=> EK//AB

Mà AB//CD

=>EF ; EK ; FK cùng // với AB 

=> E ; F ; K thẳng hàng

21 tháng 4 2017

Bài giải:

Ta có EA = ED, KB = KD (gt)

Nên EK // AB

Lại có FB = FC, KB = KD (gt)

Nên KF // DC // AB

Qua K ta có KE và KF cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.


26 tháng 7 2017

\(\Delta ADB\) có:\(AE=DE\left(gt\right),BF=FD\left(gt\right)\)

\(\Rightarrow AB\) // \(EF\)(theo đlí 2 về đường trung bình của tam giác) (1)

\(\Delta BDC\) có:\(BK=KC\left(gt\right),BF=FD\left(gt\right)\)

\(\Rightarrow FK\) // \(CD\)(theo đlí 2 về đường trung bình của tam giác)

\(CD\) // \(AB\Rightarrow FK\) // \(AB\) (1)

Từ (1) và (2), suy ra:

\(AB\) // \(EF,FK\)

\(\Rightarrow E,F,K\) thẳng hàng (theo tiên đề Ơclit )

28 tháng 6 2021

Ta có `E,F,I` là trung điểm của `AD,BC,AC`

`=> EI,IF` là đường trung bình của `\Delta ADC` và `\Delta ACB`

`=> EI////CD , EI = 1/2CD`

`=> IF////AB,IF=1/2AB`

Xét ΔADC có 

E là trung điểm của AD(gt)

I là trung điểm của AC(gt)

Do đó: EI là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: EI//DC

Xét ΔABC có 

I là trung điểm của AC(gt)

F là trung điểm của BC(gt)

Do đó: IF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: IF//AB