Giải hệ
\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\left(I\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2y+xy+y^2+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2+2x^2+x+2y-4x^2-x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2-2x^2-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\x\left(2x^2+y\right)+y\left(2x^2+y\right)-\left(2x^2+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\left(1\right)\\\left[{}\begin{matrix}2x^2=-y\\y=1-x\end{matrix}\right.\end{matrix}\right.\)
Xét TH1:\(2x^2=-y\) (vô lý) =.> Loại
Xét TH2: y=1-x
Thay \(y=1-x\) vào (1) ta được :
(1)\(\Leftrightarrow4x^2+x+3\left(1-x\right)=7\)
\(\Leftrightarrow4x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{4}\\x_2=\dfrac{1-\sqrt{17}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x1=\dfrac{1+\sqrt{17}}{4}\\y1=\dfrac{3-\sqrt{17}}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x2=\dfrac{1-\sqrt{17}}{4}\\y2=\dfrac{3+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\)
KL: phương trình (I) có 2 nghiệm là (x;y)=........
1a) \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}2xy+5x-6y-15=2xy-2x+7y-7\\12xy-24x+3y-6=12xy+18x-2y-3\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}7x-13y=8\\-42x+5y=3\end{matrix}\right.\)( đến đây đơn giản rồi :)) )
Vậy ...
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(2x^2+y\right)\left(x+y\right)-2x^2-y=0\)
\(\Leftrightarrow\left(2x^2+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2x^2\\y=1-x\end{matrix}\right.\)
Thế xuống pt dưới ...