Tính tổng:
S= 3+3/2+3/2mũ 2 +....+3/2mũ 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{2^0}+\frac{3}{2^1}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+\frac{3}{2^0}+\frac{3}{2^1}+...+\frac{3}{2^8}\)
2S-S=6-\(\frac{3}{2^9}\)
S=\(5\frac{509}{512}\)
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)
2x+2x+1+2x+2+2x+3-480=0
2x+2x.2+2x.22+2x.23=0+480
2x.(1+2+22+23)=480
2x.(1+2+4+8)=480
2x.15=480
2x=480:15
2x=32=25
Vậy x =5
nếu sai thì thông cảm nha
599 - 42 x 597 - 32 x 59
= 597.(52 - 42) - 32.59
= 597.(25 - 16) - 32.59
= 597.9 - 9.59
Đặt \(A=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Rightarrow A=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt \(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow S=2-\frac{1}{2^9}\)
Mà \(A=3.S\)
\(\Rightarrow A=3.\left(2-\frac{1}{2^9}\right)\)
\(\Rightarrow A=6-\frac{3}{2^9}\)
Chúc bạn học tốt !!!
a, 26 -3(x+1)=14
=> 3(x+1)=26-14
=> 3(x+1)=12
=> x+1=12 : 3
=> x+1=4
=> x=4-1
=> x=3
b, 5x-8=22.23
=> 5x-8=4.8
=> 5x-8=32
=> 5x=32+8
=> 5x=40
=> x=40 : 5
=> x= 8
A.26-3(x+1)=14
3(x+1)=26-14
3(x+1)=12
x+1=12:3
x+1=4
x=4-1=3
B.5x-8=2mux2.2mũ3
5x-8=32
5x=32+8
5x=40
x=40:5
x=8
a) \(\left(3^4.57-9^2.21\right):3^5\)
\(=\left(3^4.57-3^4.21\right):3^5\)
\(=\left[3^4\left(57-21\right)\right]:3^5\)
\(=3^4.36:3^5\)
\(=3^4.2^2.3^2:3^5\)
\(=3.4\)
\(=12\)
b) Ta có; \(1^3+2^3+...+9^3=2025\)
\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)
\(\Leftrightarrow2^3+4^5+...+18^3=16200\)