So sánh
a, 2437 và 910.275
b,1515 và 813.1255
c,7815-7812và 7812-789
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
a) \(3^{54}\)
\(2^{200}=4^{100}>3^{54}\)
\(\Rightarrow3^{54}< 2^{200}\)
b) \(15^{12}=3^{12}.5^{12}\)
\(1^3.125^3=\left(5^3\right)^3=5^9< 3^{12}.5^{12}\)
\(\Rightarrow15^{12}>1^3.125^3\)
c) \(78^{12}-78^{11}=78^{11}.\left(7-1\right)=78^{11}.6\)
\(78^{11}-78^{10}=78^{10}.\left(7-6\right)=78^{10}.6< 78^{11}.6\)
\(\Rightarrow78^{12}-78^{11}>78^{11}-78^{10}\)
d) \(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.72>27^{44}\)
\(\Rightarrow72^{45}-72^{44}>27^{44}\)
e) \(3^{39}=\left(3^3\right)^{13}=27^{13}>11^{11}\)
\(\Rightarrow3^{39}>11^{11}\)
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
\(a,2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\\ \Leftrightarrow6+2\sqrt{2}< 3+6=9\\ b,\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}\\ 2^2=4=14-10\\ \left(2\sqrt{33}\right)^2=132>100=10^2\Leftrightarrow-2\sqrt{33}< -10\\ \Leftrightarrow\sqrt{11}-\sqrt{3}< 2\)
a) 2437 = 910.275
b)1515 > 813 . 1255
c) 7815 -7812 >7812 -789