K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

Để A nhận giá trị nguyên thì 3n+10 phải chia hết cho n+2

Ta có:   3n+10=3.(n+2)+4

\(\Rightarrow\)4 chia hết cho 3n+10

Tức là \(3n+10\in U\left(4\right)\)

Mả \(U\left(4\right)\in\left(1;2;4\right)\)

ta có bảng giá trị sau:

3n+10124
3n-9-8-6
n-3-8/3-2

Lại do:   n thuộc Z.

Vay n= -3 ; -2.

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

DT
19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)

Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)

\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)

Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)

19 tháng 8 2023

\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
 

\(3n-4\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-\dfrac{1}{3}\) \(1\) \(\dfrac{5}{3}\) \(3\)

Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên

20 tháng 5 2016

a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)

Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4

b) Cho n-1=0 => n=1

Sau đó thay vào biểu thức 10n2+n -10 sẽ  tìm ra n=1

Cho mình nha!!! <3

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

Để A là số nguyên thì 3n+5 chia hết cho n+4

=>3n+12-7 chia hết cho n+4

=>n+4 thuộc {1;-1;7;-7}

=>n thuộc {-3;-5;3;-11}

3 tháng 11 2023

a) A nguyên khi (12n + 17) ⋮ (3n + 1)

Ta có:

12n + 17 = 12n + 4 + 13

= 4(3n + 1) + 13

Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)

⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}

⇒ 3n ∈ {-14; -2, 0; 12}

⇒ n ∈ {-14/3; -2/3; 0; 4}

Mà n là số nguyên

⇒ n ∈ {0; 4}

b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)

Ta có:

10n + 9 = 10n - 2 + 11

= 2(5n - 1) + 11

Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)

⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}

⇒ 5n ∈ {-10; 0; 2; 12}

⇒ n ∈ {-2; 0; 2/5; 12/5}

Mà n là số nguyên

⇒ n ∈ {-2; 0}

19 tháng 4 2020

a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)

b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)

A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)

\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)

\(\Rightarrow n=-3;-5;13;-21\)

học tốt

19 tháng 4 2023

Ta có:
\(A=\dfrac{n-3}{n-2}=\dfrac{n-2-1}{n-2}=1-\dfrac{1}{n-2}\)
Để A nhận giá trị nguyên thì \(1⋮\left(n-2\right)\) hay \(\left(n-2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\left(+\right)\) \(n-2=1\)
\(\Rightarrow n=3\)
\(\left(+\right)\) \(n-2=-1\)
\(\Rightarrow n=1\)
Vậy \(n\in\left\{3;1\right\}\)

19 tháng 4 2023

\(A=\dfrac{n-3}{n-2}=\dfrac{\left(n-2\right)-1}{n-2}=\dfrac{n-2}{n-2}-\dfrac{1}{n-2}=1-\dfrac{1}{n-2}\)

Để A nhận giá trị nguyên thì \(\dfrac{1}{n-2}\) nguyên

\(=>1⋮n-2\)

\(=>n-2\in\text{Ư}\left(1\right)=\left\{-1;1\right\}\)

\(=>n\in\left\{1;3\right\}\)