Cho tam giác ABC vuông tại A có AB bằng 6 cm AC bằng 8 cm
a) tính độ dài đoạn BC
b) Vẽ AH vuông góc BC tại H. Trên AC lấy D sao cho cho HD=HB Chứng minh AB = AD
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh ED vuông góc AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
A)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}\)
\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
b)
Xét hai tam giác vuông AHB và AHD, có:
AH là cạch chung
HB=HD (gt)
Vậy hai tam giác đó bằng nhau(c.g.c)
=> AB=AD ( hai cạnh tương ứng)
c)Xét tứ giác ABDE có
AH vuông góc BD
và AE cắt BD tại trung điểm mỗi đường
=> tứ giác ABDE là hình thoi
=> AB //DE
mà AB vuông góc AC
=> DE cũng vuông góc AC
d)
Chắc do tính chất 2 đường chéo hình thoi
a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)
Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2
=> AC2=64 (cm) => AC2=82 => AC=8 (cm).
b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD
=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)
c) Nối E với D.
Xét \(\Delta\)AHB và \(\Delta\)EHD:
HB=HD
^AHB=^EHD=900 => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)
HA=HE
=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED
Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)
Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC
=> AD \(⊥\)EC (đpcm)
a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
102 = 62 + AC2
=> AC2 = 100 - 36 = 64
=> AC =8
a) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py- ta - go)
Thay số: 6^2 + 8^2 = BC^2
BC^2 = 100
=> BC = 10 cm
b) ta có: \(AH\perp BD⋮H\)
HD = HB
=> AH là đường trung trực của BD ( định lí đường trung trực)
mà \(A\in BD\)
=> AB = AD ( tính chất đường trung trực)
c) Xét tam giác AHB vuông tại H và tam giác EHD vuông tại H
có: HB = HD (gt)
AH = EH ( gt)
\(\Rightarrow\Delta AHB=\Delta EHD\left(cgv-cgv\right)\)
=> góc HAB = góc HED ( 2 góc tương ứng)
mà góc HAB, góc HED nằm ở vị trí so le trong
\(\Rightarrow AB//ED\)( định lí)
mà \(AB\perp AC⋮A\)(gt)
\(\Rightarrow ED\perp AC\)( định lí)
d) ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{6.8}{2}=\frac{48}{2}=24cm^2\)
mà \(S_{\Delta ABC}=\frac{BC.AH}{2}\)
thay số \(24=\frac{10.AH}{2}=5AH\)
\(\Rightarrow AH=\frac{24}{5}=4,8cm\)
Xét tam giác ABH vuông tại H
có: \(AB^2=BH^2+AH^2\) ( py - ta - go)
thay số: 6^2 = BH^2 + 4,8^2
BH^2 = 6^2 - 4,8^2
BH^2 = 12,96
=> BH = 3,6 cm
mà BH = DH = 3,6 cm ( H thuộc BD) => DH = 3,6 cm
=> BH + DH = BD
thay số: 3,6 + 3,6 = BD
BD = 7,2 cm
mà AH = EH = 4,8 cm ( H thuộc AE) => EH = 4,8 cm
=> AH + EH = AE
thay số: 4,8 + 4,8 = AE
AE = 9,6 cm
=> BD < AE ( 7,2 cm < 9,6 cm )
mk vẽ hình đó ko đc đúng đâu ! thông cảm nha bn !
a: BC=10cm
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
hay AB=AD
c: Xét tứ giác ABED có
H là trung điểm của AE
H là trung điểm của BD
Do đó: ABED là hình bình hành
Suy ra: AB//ED
hay ED\(\perp\)AC