- Tính
C = \(x^{20}-2001.x^{19}+2001.x^{18}-2001.x^{17}+....-2001.x^3+2001.x^2-2001.x\) với x =2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2000}{x-2000}=\frac{y+2001}{y-2001}\Rightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Rightarrow\frac{x+2000}{y+2001}=\frac{x-2000}{y-2001}=\frac{x+2000+x-2000}{y+2001+y-2001}=\frac{2x}{2y}=\frac{x}{y}=\frac{x+2000-\left(x-2000\right)}{y+2001-\left(y-2001\right)}=\frac{2000}{2001}\)
=>đpcm
\(\dfrac{1}{\left(x+2000\right)\left(x+2001\right)}+\dfrac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\dfrac{1}{\left(x+2009\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2001}+\dfrac{1}{x+2001}-\dfrac{1}{x+2002}+...+\dfrac{1}{x+2009}-\dfrac{1}{x+2010}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{x+2010-x-2000}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{10}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\left(x+2000\right)\left(x+2010\right)=11\\ \Leftrightarrow...\)
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Dễ thấy 2001=2000+1=x+1,thay vào C ta có:
\(C=x^{20}-\left(x+1\right)x^{19}+\left(x+1\right)x^{18}-\left(x+1\right)x^{17}+...-\left(x+1\right)x^3+\left(x+1\right)x^2\)
\(=x^{20}-x^{20}-x^{19}+x^{19}+x^{18}-x^{18}-x^{17}+...-x^4-x^3+x^3+x^2=x^2=2001^2=4004001\)
Vậy C=4004001