\(S=3^0+3^2+3^4+3^6+.....+3^{2002}\)
Tính S
Nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=30+32+34+...+32002
=> 9S=32+34+36+...+32004
=> 9S-S=(32+34+...+32004)-(30+32+34+...+32002)
=>8S=32004-1=> S=\(\frac{3^{2004}-1}{8}\)
vậy...
ta có S=3^0+3^2+3^4+3^6+...+3^2002(1)
nhân cả hai vế với 3^2,ta có
3^2S=3^2(3^0+3^2+3^4+3^6+...+3^2002)
9S=3^2+3^4+3^6+3^8+...+3^2004(2)
lấy(2) trừ (1)ta có
9S-S=(3^2+3^4+3^6+3^8+...+3^2002) - (3^0+3^2+3^4+3^6+...+3^2002)
8S=3^2+3^4+3^6+3^8+...+3^2004-3^0-3^2-3^4-3^6-...3^2002
8S=3^2004-3^0
8S=3^2004-1
S=(3^2004-1)/8
S=30+32+34+36+...+3200
6S=32+34+36+...+3202
6S-S=(32+34+36+...+3202)-(1+32+34+...+3200)
5S=1+(32-32)+(34-34)+...+(3200-3200)+3202
S=(3200+1):5\(\frac{ }{ }\)
a ) Nhân 9 vào 3 vế của S , ta được :
9S = 32 ( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
Lấy biểu thức 9S - S , ta được :
9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=> S = ( 32004 - 1 ) : 8
ý b tự làm !
S = 30 + 32 + 34 + .... + 32002
Nhân cả hai vế của S với 32 ta được :
32S = 32 ( 30 + 32 + 34 + .... + 32002 )
= 32 + 34 + 36 + ..... + 32004
Trừ cả hai vế của 32S cho S ta được :
32S - S = ( 32 + 34 + 36 + ..... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
8S = 32004 - 1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
bạn nhóm 3 số vào 1 nhóm rồi nhóm ts chung riêng nhóm thứ nhất tính ra lun
Giải
Ta có: S=\(3^0+3^2+3^4+...+3^{2002}\)
\(\Leftrightarrow\)\(3^2\)S=\(3^2\)(\(3^0+3^2+3^4+...+3^{2002}\))
\(\Leftrightarrow\)\(3^2S=3^2+3^4+3^6+...+3^{2004}\)
\(\)\(3^2S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
8S=\(\left(3^2-3^2\right)+\left(3^4-3^4\right)+\left(3^6-3^6\right)+...+\left(3^{2002}-3^{2002}\right)+3^{2004}-1\)
8S=0+0+0+...+\(3^{2004}\)-1=\(3^{2004}-1\)
\(\Leftrightarrow\)S=\(\frac{3^{2004}-1}{8}\)
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+.....+3^{2002}\)
\(3S=3^2+3^{\text{4}}+3^6+3^8+......+3^{2004}\)
\(3S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+....+3^{2002}\right)\)
\(3S-S=3^{2004}-3^0\)
\(S=\frac{3^{2004}-3^0}{2}\)
S = 30 + 32 + 34 + .... + 32002
32S = 32 ( 30 + 32 + 34 + .... + 32002 )
= 32 + 34 + 36 + .... + 32004
32S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
8S = 32004 - 1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
a)S=1-2+3-4+...+2005-2006
S=(1-2)+(3-4)+...+(2005-2006)
S=(-1)+(-1)+...+(-1) Dãy S có 2016 thì có 1008 cặp
S=(-1)x1008
S=-1008
b)Tương tự
c)S=1+2-3-4+5+6-7-8+...+2001+2002-2003-2004
S=(1+2-3-4)+(5+6-7-8)+...+(2001+2002-2003-2004)
S=(-4)+(-4)+...+(-4) Dãy S có 2004 số => có 1002
S=(-4)x1002
S=-4008
lớp 1 sao cái này là lớp 6 nha bạn
Nhân với S với 32 ta dc
9S = 3 ^ 2 + 3 ^ 4 + ... + 3 ^ 2002 + 3 ^ 2004
=> 9S - S = ( 3 ^ 2 + 3 ^ 4 + ... + 3 ^ 2004 ) - ( 3 ^ 0 + 3 ^ 4 + ... + 3 ^ 2002 )
=> 8S = 32004 - 1 : 8
=> S = 32004- 1 : 8