K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>2^4x<2^28

=>4x<28

=>x<7

b: =>5^3x+3<5

=>3x+3<1

=>3x<-2

=>x<-2/3

14 tháng 7 2023

a) \(16^x< 128^4\)

= (24)x < (27)4

= 24x < 228

= 4x < 28

= x < 7 

Vậy \(x=\left\{0;1;2;3;4;5;6;\right\}\)

\(#Tuyết\)

21 tháng 7 2021

Bài 10:

a) (x+2)2 -x(x+3) + 5x = -20

=> x2 + 4x + 4 - x2 - 3x + 5x = -20

=> 6x = -20 + (-4)

=> 6x = -24

=> x = -4

b) 5x3-10x2+5x=0   

=>5x(x2-2x+1)=0

=>5x(x-1)2 =0

=> 5x=0 hoặc (x-1)2=0

=>x=0 hoặc x=1

c) (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x- 1) = 0

<=>  (x2 - 1)(-3x2) = 0

<=> (x2 - 1)=0 hoặc (-3x2) =0

<=> x2=1 hoặc x2=0

<=> x=−1;1 hoặc x=0

d)

(x+1)3−(x−1)3−6(x−1)2=-19

⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0

⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0

⇔12x+13=0⇔12x+13=0

⇔12x=-13

⇔x=-23/12

Học tốt nhé:333banhqua

 

 

 

\(\left(x+1\right)\left(x+7\right)< 0\)

thì \(x+1;x+7\)khác dấu

 th1\(\hept{\begin{cases}x+1< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>-7\end{cases}\Rightarrow}-7< x< -1\left(tm\right)}\)

th2\(\hept{\begin{cases}x+1>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< -7\end{cases}\Rightarrow}-1< x< -7\left(vl\right)}\)

vậy với\(-7< x< -1\)thì \(\left(x+1\right)\left(x+7\right)< 0\)

16 tháng 7 2019

a) (2x - 3) = 5

<=> 2x - 3 = 5

<=> 2x = 5 + 3

<=> 2x = 8

<=> x = 4

=> x = 4

b) (5x - 3) = 1/2

<=> 5x - 3 = 1/2

<=> 5x = 1/2 + 3

<=> 5x = 7/2

<=> x = 7/10

=> x = 7/10

c) (x + 1)(x + 7) < 0

<=> x = -1; -7

<=> x < -7 <=> x = -8 <=> (-8 + 1)(-8 + 7) < 0 <=> 7 < 0 (loại)

<=> -7 < x < -1 <=> x = -6 <=> (-6 + 1)(-6 + 7) < 0 <=> -5 < 0 (nhận)

<=> x > -1 <=> x = 0 <=> (x + 1)(x + 7) < 0 <=> 7 < 0 (loại)

Vậy: -7 < x < -1

NV
16 tháng 3 2019

Mặt cầu (S) có tâm \(I\left(1;0;0\right)\) bán kính \(R=1\)

Do mặt phẳng (P) song song với (Q)

\(\Rightarrow\) Phương trình (P) có dạng: \(5x-12z+a=0\)

Do (P) tiếp xúc với (S) \(\Rightarrow d\left(I;\left(P\right)\right)=R\)

\(\Rightarrow\frac{\left|5.1+0.0-12.0+a\right|}{\sqrt{5^2+0^2+\left(-12\right)^2}}=1\Leftrightarrow\left|a+5\right|=13\Rightarrow\left[{}\begin{matrix}a=8\\a=-18\end{matrix}\right.\)

\(\Rightarrow\) Có hai pt (P) thỏa mãn: \(\left[{}\begin{matrix}5x-12z+8=0\\5x-12z-18=0\end{matrix}\right.\)

Đáp án A

9 tháng 8 2017

a, \(A=-5x^2+10x-7=-5\left(x^2-2x+1\right)^2-2=-5\left(x-1\right)^2-2< 0\)

\(\Rightarrowđpcm\)

b, \(B=-x^2+x-\dfrac{1}{4}\)

\(=-\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2\le0\)

c, \(C=-4x^2+4x-3=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2< 0\)

\(\Rightarrowđpcm\)

9 tháng 8 2017

Sao câu a phía cuối lại trừ 2 vậy bạn

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)

Vậy...

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)

b) \(\left(5x+3\right)\left(3x-2\right)< 0\)

\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)

\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)