Giúp mình với, ko làm tắt nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chị có thể nói cụ thể, trình bày rõ ràng câu a,b,c có đc ko ạ?
a, \(\dfrac{\sqrt{80}}{\sqrt{5}}\)-\(\sqrt{5}\).\(\sqrt{20}\)= \(\sqrt{16}\)-10=-6
b, (\(\sqrt{28}\)-\(\sqrt{12}\)-\(\sqrt{7}\))\(\sqrt{7}\)+2\(\sqrt{21}\)=\(\sqrt{196}\)-\(\sqrt{84}\)-7+2 \(\sqrt{21}\)=14-7=7
c, \(\sqrt[3]{2}\).\(\sqrt[3]{32}\)+\(\sqrt{2}\).\(\sqrt{32}\)=\(\sqrt[3]{64}\)+\(\sqrt{64}\)=4+8=12
d, \(2\sqrt{8\sqrt{3}}\)-\(\sqrt{2\sqrt{3}}\)-\(\sqrt{9\sqrt{12}}\)=\(4\sqrt{12}\)-\(\sqrt{12}\)-\(3\sqrt{12}\)=0
Ta có :
\(S=\left(1+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}=P\)
\(\Rightarrow\left(s-p\right)^{2013}=0^{2013}=0\)
1: Thay x=16 vào A, ta được:
\(A=\dfrac{16-4}{4-2}=\dfrac{12}{2}=6\)
2: \(B=\dfrac{x-4+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)