Cho điểm N thuộc đường thẳng a, số đường thẳng đi qua điểm N và song song với đường thẳng a là:
A.0
B.2
C.vô số đường thẳng
D.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi \(d_1\)là đường thẳng cần tìm
Vì \(d_1\)song song Ox nên \(d_1\)có dạng y=b. Vì \(d_1\)đi qua K(-1;8) \(\Rightarrow d_1:y=8\)
b. Gọi \(d_2\)là đường thẳng đi qua M.N \(\Rightarrow\hept{\begin{cases}-3=1.a+b\\2=0+b\end{cases}\Rightarrow\hept{\begin{cases}a=-5\\b=2\end{cases}}}\)
\(\Rightarrow d_2:y=-5x+2\)
Gọi d là đường thẳng cần tìm .Vì d song song \(d_2\)\(\Rightarrow d:y=-5x+b\)
d đi qua gốc tọa độ \(\Rightarrow b=0\)
Vậy d có dạng y=-5x
a) -Điểm P thuộc đường thẳng MN vì 3 điểm M,N,P thẳng hàng.
b) -Đường thẳng d không thể song song với đường thẳng MN. Vì d cắt MN tại P, mà đg thẳng song song thì không cắt nhau.
a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n = \left( {1;3} \right)\)
\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát
\(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)
b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u = \left( {3; - 1} \right)\)
\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 1 - t\end{array} \right.\)
Vẽ NA ( A nằm trên ab ) vuông góc với ab. Sau đó vẽ đường thẳng xy vuông góc với AN.
C