K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mik quên còn t/c đường phân giác nữa 

Sorry nha

Nhưng chưa chắc đúng đâu sơ xài quá

Bài này ẩu kinh 

Bạn biết phép đông dạng gồm :

  Góc - Góc

Cạnh Cạnh cạnh

Cạnh canh góc

Ở đây thứ nhất thiếu dữ liệu 

Thứ 2 thiếu hình 

Thứ 3 chơi xỏ mik 

cho hỏi làm như này đúng ko:

Gọi e là đường phân giác củaU  . Ta có Ee biến ∆CUG  thành ∆C'U'P'.  biến ∆C'U'P' thành ∆CUP

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp E và sẽ tam giác CUG thành tam giác CUP

là xog r đấy ,

nguyễn tuấn anh;có thiếu dữ klieeju ko ,các pạn cho mk hỏi ,làm như z đúng chưa ạ
 

hình nè ,cho nx nha

30 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

Gọi d là đường phân giác của góc B của ΔABC.

+ Phép đối xứng qua d: biến H thành H’ ∈ AB, biến A thành A’ ∈ BC; biến B thành B

(Dễ dàng nhận thấy H’ ∈ BA; A’ ∈ BC).

⇒ ΔH’BA’ = Đd(ΔHBA).

⇒ ΔH’BA’ = ΔHBA.

Mà ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔHBA theo tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ ΔABC Giải bài tập Đại số 11 | Để học tốt Toán 11 ΔH’BA’ theo tỉ số k

⇒ AB = k.H’B; BC = k.BA’.

Mà A ∈ tia BH’ ; C ∈ tia BA’

Giải bài tập Đại số 11 | Để học tốt Toán 11

Vậy phép đồng dạng cần tìm là phép vị tự tâm B, tỉ số Giải bài tập Đại số 11 | Để học tốt Toán 11 hợp với phép đối xứng trục d là phân giác của Giải bài tập Đại số 11 | Để học tốt Toán 11

31 tháng 3 2017

Gọi d là đường phân giác của . Ta có {D_{d}}^{} biến ∆HBA thành ∆A'B'C'. Dd biến ∆A'B'C' thành ∆ABC.

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp {D_{d}}^{} và Dd sẽ biến HBA thành ABC.

31 tháng 3 2017

Gọi d là đường phân giác của . Ta có {D_{d}}^{} biến ∆HBA thành ∆A'B'C'. Dd biến ∆A'B'C' thành ∆ABC.

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp {D_{d}}^{} và Dd sẽ biến HBA thành ABC.

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

24 tháng 9 2021

CMR MO vuông góc với EF

a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có

góc CAI=góc HAB

=>ΔACI đồng dạng với ΔAHB

b: Xét ΔHBI và ΔHAB có

góc HBI=góc HAB

góc H chung

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI

c: CD/DA=CK/KA=CB/CA

NV
8 tháng 4 2023

a.

Xét hai tam giác AIC và ABH có:

\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)

b.

Xét hai tam giác AIC và BIH có:

\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\)  \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)

(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)

c.

Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)

Xét hai tam giác ABC và ACK có:

\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)

(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)