Tìm số hữu tử x sao cho x.x+5 và x.x _ 5 đều là Bình phương của các số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tích của 2 số hữu tỉ
\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)
b, Thương của 2 số hữu tỉ
\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)
c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm
\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)
d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5
\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)
Chọn (C) Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ.
Số hữu tỉ âm nhỏ nhất được viết bằng 3 chữ số 1 là \(-\frac{1}{11}\)
Số hữu tỉ âm lớn nhất đưuọc viết bằng 3 chữ số 1 là \(-1,11\)
Tỉ số của A và B là \(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Tỉ số A vs B là :
\(-\frac{1}{11}:\left(-1,11\right)=\frac{100}{1221}\)
Đáp số : 100/1221
a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ
=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn
Vậy tổgg só là số vô tỉ
Để t = \(\frac{3x-8}{x-5}\)nguyên
=> 3x - 8 chia hết cho x - 5
=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
Có 3(x - 5) chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)
=> x - 5 thuộc {1; -1; 7; -7}
=> x thuộc {6; 4; 12; -2}
Để T nguyên thì 3x - 8 chia hết cho x - 5
<=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)={-1;1;-7;7}
Ta có:
x - 5 | -1 | 1 | -7 | 7 |
x | 4 | 6 | -2 | 12 |
Gọi a là số vô tỉ, b là số hữu tỉ.
Ta có a/b là số vô tỉ vì ngược lại nếu a/b = b' là số hữu tỉ thì a = b . b'
Khi đó, b là số hữu tỉ và b’là số hữu tỉ nên a là số hữu tỉ ( tích của hai số hữu tỉ là số hữu tỉ); trái với giả thiết a là số vô tỉ.
Do đó, thương của một số vô tỉ và một số hữu tỉ là số vô tỉ.
Cho 3 **** kiểu gì nào?
a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.
b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết \(a=bt\), với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\) cũng hữu tỉ.
c) Trong trường hợp này \(a,b\) có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\) là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\) cũng là số hữu tỉ.
Đặt x2+5=a2 (1)
x2-5=b2 (2)
Kết hợp (1) và (2)
=> (x2+5) - (x2-5)=a2-b2
=>x2+5-x2+5=a2-b2
=>(a-b)(a+b)=10=1.10=2.5=(-1).(-10)=(-2).(-5)
Đặt:
a+b=y=>a=(b+y):2
=>....................