K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

\(A=1+1+1+1-\left(\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}\right)\)

\(A=4+\left(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}\right)\)

\(A=4+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(A=4+\left(1-\frac{1}{9}\right)\)

\(A=4+\frac{8}{9}=\frac{44}{9}\)

Vậy A=44/9

29 tháng 3 2018

Đặt \(A=1\frac{7}{15}-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}-\frac{1}{143}-\frac{1}{195}\)

\(\Rightarrow A=\frac{22}{15}-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\right)\)

Đặt \(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(\Rightarrow B=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)

\(\Rightarrow2B=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\right)\)

\(\Rightarrow2B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)

\(\Rightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(\Rightarrow2B=1-\frac{1}{15}\)

\(\Rightarrow2B=\frac{14}{15}\)

\(\Rightarrow B=\frac{14}{15}:2\Rightarrow B=\frac{7}{15}\)

\(\Rightarrow A=\frac{22}{15}-\frac{7}{15}\Rightarrow A=\frac{15}{15}=1\)

29 tháng 3 2018

đáp án là 59​/15

   mình chắc chắn

                      

10 tháng 5 2018

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(=\frac{1}{2}\times\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\times\frac{12}{13}\)

\(=\frac{6}{13}\)

10 tháng 5 2018

     1/3 + 1/3×5 + 1/5×7 + 1/7×9 + 1/9×11 + 1/11×13

=> 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +1/9 -1/11 + 1/11 + -1/13

=> 2/3 - 1/13 = 23/39

Đúng 100% nha. k mk nha

8 tháng 8 2017

9/11 nhé

8 tháng 8 2017
có lời giải đi bạn ơi!
26 tháng 7 2018


\(\frac{7}{15}\)nha ban

26 tháng 7 2018

bạn có thể trình bày cách làm cho mình ko

5 tháng 4 2016

1/100

23 tháng 1 2018

Ta có: \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

\(\Leftrightarrow A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

\(\Rightarrow2A=1-\frac{1}{11}=\frac{10}{11}\)

\(\Rightarrow A=\frac{10}{11}:2=\frac{5}{11}\)

Vậy \(A=\frac{5}{11}\)

23 tháng 1 2018

A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

A = \(1-\frac{1}{11}\)

A = \(\frac{10}{11}\)

22 tháng 5 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{98}{303}\)

\(A=\frac{49}{303}\)

22 tháng 5 2016

A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

2A=\(\frac{1}{3}-\frac{1}{101}\)

2A=\(\frac{98}{303}\)

A=\(\frac{98}{303}.\frac{1}{2}\)

A=\(\frac{49}{303}\)

Chúc bạn học tốt!

6 tháng 7 2016

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\)

\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(\Rightarrow S=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)

\(\Rightarrow S=\frac{1}{2}.\frac{14}{15}\)

\(\Rightarrow S=\frac{7}{15}\)

6 tháng 7 2016

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+....+\frac{1}{195}\)

\(=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{13x15}\)

\(=\frac{1}{2}x\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{13x15}\right)\)

\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}x\left(1-\frac{1}{15}\right)=\frac{1}{2}x\frac{14}{15}=\frac{7}{15}\)

24 tháng 3 2019

a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\frac{14}{15}\)

\(=\frac{14}{30}=\frac{7}{15}\)

24 tháng 3 2019

a)

\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)

\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=2\left(1-\frac{1}{15}\right)\)

\(=2.\frac{14}{15}\)

\(=\frac{28}{15}\)

b)

\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)

                                                                                         \(...\)

9 tháng 7 2016

\(\Rightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{99.101}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{88}{303}\)

\(\Rightarrow A=\frac{44}{303}\)

9 tháng 7 2016

\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)

\(\Rightarrow2A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

=> A = 98/203 : 2 = 49/303