Cho △ABC, AD và BE là các đường trung tuyến, \(\widehat{DAC}=\widehat{EBC}=30^0\).
Chứng minh rằng △ABC đều.
-Khó quá giúp mình với ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ đề suy ra:
\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)
\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)
áp dụng đl tổng 3 góc trong của một tam giác :
\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)
\(\widehat{ACB}+60^o+60^o=180^o\)
\(\Rightarrow\widehat{ACB}=60^o\)
Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)
suy ra : ABC là tam giác đều(đpcm)
Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.
Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)
Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300
nên AK = \(\frac{1}{2}\)AC (2)
Từ (1) và (2) suy ra AK = AH
Xét \(\Delta\)AKB và \(\Delta\)AHD có:
^AKB = ^AHD (=900)
AK = AH(gt)
^BAK = ^DAH (=500)
Do đó \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)
=> AB = AD
Vậy \(\Delta\)ABD cân tại A(đpcm)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{ABH}=\widehat{ADC}\)(1)
Xét (O) có
ΔADC nội tiếp đường tròn(A,D,C∈(O))
AD là đường kính(gt)
Do đó: ΔADC vuông tại C(Định lí)
Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)
Ta có: ΔABH vuông tại H(AH⊥BC)
nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)
Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
Tự vẽ hình
Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:
AB = AC (do tam giác ABC cân tại A)
\(\widehat{A}\):góc chung
=>Tam giác ADB=tam giác AEC (...)
=>AD=AE ( hai cạnh tương ứng )