K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

Ta có: |x+y-2|≥0\(\forall\)x, y

Dấu "=" xảy ra \(\Leftrightarrow x+y-2=0\)

\(\left(2x-1\right)^{2022}\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\Rightarrow A=\left|x+y-2\right|+\left(2x-1\right)^{2022}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

 

15 tháng 3 2021

Ta có: 

\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Gợi ý. Dùng cái trên.

15 tháng 3 2021

Mọi người giúp mình với a :))

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

5 tháng 11 2016

Bài 1:

\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)

\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)

\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)

Bài 2:

\(P=\left|2-x\right|+2y^4+5\)

Ta thấy:

\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)

\(\Rightarrow\left|2-x\right|+2y^4\ge0\)

\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)

\(\Rightarrow P\ge5\)

Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)

Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)

 

5 tháng 11 2016

Bài 4:

2(2x+x2)-x2(x+2)+(x3-4x+13)

=2x2+4x-x3-2x2+x3-4x+13

=(2x2-2x2)+(4x-4x)-(-x3+x3)+13

=13

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

26 tháng 12 2022

A = (x+5)2022 + | y - 2021| + 2022

vì ( x+5)2022 \(\ge\) 0; 

    |y-2021|   \(\ge\) 0

    2022      = 2022

Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022

Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)

1 tháng 12 2021

chx chắc là A đâu, bạn cho mik bt dấu "=" xảy ra khi nào

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.