K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2015

Nếu abc lẻ thì a;b;c lẻ mà lẻ + lẻ = chẵn nên abc + a; abc + b; abc + c phài chẵn mà nó lẻ nên sai,

Tương tự. Vậy ko tồn tại a; b; c.

19 tháng 12 2017

sao lại chẵn lẻ ở đâu

15 tháng 1 2017

phân tích câu tạo số đi rồi khử là ok

18 tháng 5 2017

abc + a = 333 

a + c = 3 ( vì c< 10)  suy ra c = 0 và b = 3 

xét abc + b = 335 

c +b = 5 trong khi ở trên thì c = 0 và b = 3 

bởi vậy không tồn tại stn a ,b ,c 

11 tháng 10 2016

 

mk bik nhưng mà bài này ko bik giãi thích s cho dug nữa

30 tháng 1 2018

a) Bn xét khi a chẵn,b chẵn,c chẵn thì các biểu thức trên chẵn nên vô lí.

​Nếu a,b,c lẻ thì các biểu thức trên phải chẵn nên cũng vô lí.

​Vậy ko tồn tại.Tk mình nha bn !

30 tháng 1 2018

Cụ thể hơn đi

29 tháng 3 2015

Vì abc<1000

=>a<7

=>abc<700

=> 1<=a,b,c<=5

Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5

Thật vậy: Giả sử cả 3 số a,b,c<=4

=>abc<=72<100 vô lí

Do đó a=5 hoặc b=5 hoặc c=5

*Nếu a=5

Ta có

500+bc=5!+b!+c!<=240+b!

=>b!+240>500

=>b!>260

=>b>5 vô lí

Nên a<=4

*Nếu b=5

Lập luận tương tự b<=4

*Nếu c=5

Tìm được a=1;b=4

Vậy…

17 tháng 3 2018

abc=100a+ 10b +c =a! +b! +c!. 
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0 
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7) 
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải) 
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)] 
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ] 
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5 
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5 
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c ) 
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b ) 
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5 
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c) 
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4 
vậy abc= 145. 
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6

1 tháng 7 2015

+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.

(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)

Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.

Tìm x;y  5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)

Ta tìm được 1! + 4! + 5! = 145

Vậy a = 1; b = 4; c = 5.

1 tháng 7 2015

+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.

(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)

Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.

Tìm x;y  5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)

Ta tìm được 1! + 4! + 5! = 145

Vậy a = 1; b = 4; c = 5

GH
20 tháng 5 2023

abc = 512 nha bạn

22 tháng 5 2023

Trong đề abc có gạch ngang trên đầu ms lm đc,trong bài làm trình bày abc có gạch trên đầu nha

Điều kiện: a≠0; a,b,c ϵ N

Ta thấy: 10303=1000

Mà abc có 3 chữ số

=> (a+b+c) <10

Nếu (a+b+c)≤4 ⇒ (a+b+c)3≤43=64=abc (vô lí)

=> (a+b+c)>4

Nếu a+b+c=5

=>5353=125

=> abc=125 (Tổng ≠5)

Nếu (a+b+c =6) => abc= 6363=216 (Tổng ≠6)

Nếu (a+b+c=7)=> abc=7373=343(Tổng ≠7)

Nếu (a+b+c=8)=> abc= 8383=512 (tổng =8) → Chọn

Nếu (a+b+c=9)=> abc=9393=729(Tổng ≠9)

                                    Vậy: abc=512

*like hộ phát