Cho tam giác ABC,D là trung điểm của AB.Đường thẳng qua D và song song với BC cắt AC tại E, đường thẳng qua E và song song với AB cắt BC ở F.Chứng Minh rằng a,AD=EF b,tam giác ADE= tam giác EFC c,AE=EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Nối D với F .
Do DE // BF , EF // BD
nên tam giác DEF=tam giác FBD(g.c.g)
=>EI=DB .
Ta lại có:AD=DB
=>AD=BF
b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .
AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)
=>tam giác ADE=tam giác EFC(g.c.g)
c)tam giác ADE=tam giác EFC(câu B)
=>AE=EC(g.c.g)
xét T/G EDF và BFD
DF chung EDF=BFD (so le trong ) vì ED//CB ( gt)
EFD=BDF ( so le trong ) vì EF//AB (gt)
=> EDF=BFD ( G.C.G) => EF = BD ( 2 cạnh tương ứng ) mà DB =AD ( trung điểm D) => EF=AD ( dcpcm)
câu B) có EF=AD (CMT)
có CEF=EAC ( đồng vị ) vì EF//AB
có EFC=ADE ( cùng đồng vị với góc B ) vì EF//AB và ED//CB
=> ADE=EFC ( G.C.G)
câu C)
Có T/G ADE = EFC (CMT) => AE=EC (2 cạnh tương ứng )
xong k đúng dùm mình nha
lam so so thoi do
a,Xét tam giác CEF và tam giác FBD co
DF la canh chung
góc EDF = góc DFB ( 2 góc so le trong của DE//BC)
góc BDF = Góc EDF( 2 góc so le trong của EF//AB)
=> tam giác CEF= tam giác FBD (g.c.g)
=>EF = DB ( 2 cạnh tương ứng)
mà BD= AD ( D la trung diem cua AB)
=> EF= AD(dpm)
b,mới nghĩ đến đó thôi
hình nè lo mà cảm ơn đi, bữa sau tui nghĩ tiếp câu b chợ, mới được có 2 yếu tố
Xét Δ DBF và Δ FDE, ta có:
∠(BDF) =∠(DFE) (so le trong vì EF // AB)
DF cạnh chung
∠(DFB) =∠(FDE) (so le trong vì DE // BC)
Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: AD = EF
Em tham khảo tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
Xét 2 tam giác AED và tam giác FED có ED chung
Vì D là chung điểm =>DA=DB
=>EF//AB=>EF//AD
Nối Fvới D=>AE//DF
Vậy hai tam giác ADE = EDF(c.c.c)
=>AD=EF
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
hình e tự vẽ
a) xét tg ABC có +D là tđ của AB
+DE//BC
=> DF là đg tb của tg ABC
=> F là tđ của BC
xét tg BDF và tg FEC có:
\(+\widehat{DBF}=\widehat{EFC}\) ( vì EF//BD)
\(+BF=FC\left(cmt\right)\)
\(+\widehat{DBF}=\widehat{ECF}\) ( đồng vị_
=> tg BDF = tg FEC (gcg)
=> BD=EF mà BD=DA
=> AD=EF
b)Xét tg ABC có D là tđ của AB ; DE//Bc
=> DE là đg tb của tg ABC
=> E là tđ của AC
xét tg ADE và tg EFC có :
\(+\widehat{DAE}=\widehat{FEC}\) (vì EF//AB)
\(+AE=EC\)
\(+\widehat{AED}=\widehat{ECF}\)(DE//BC)
=> tg ADE = tg EFC(gcg)
c) theo cmt AE=EC vì E là tđ Của AC