K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2015

Ta có:

Nếu p=2 thì p+2=4 ko phải số nguyên tố nên loại

Nếu p=3 thì p+2=5;p+10=13 đều là số nguyên tố nên chọn

Nếu p>3 thì P=3k+1 hoặc P=3k+2

+P=3k+1=>P+2=3k+3 chia hết cho 3 loại

+P=3k+2 thì P+1=3k+12 chia hết cho 3 loại

Vậy P=3

 

28 tháng 4 2015

Cảm ơn bạn nhiều

Thank you very much !

11 tháng 11 2017

a, p = 3

b, p = 3

c, p = 5

k mk nha bạn

N
11 tháng 11 2017

p có lớn hơn 3 ko bn

15 tháng 11 2017

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

17 tháng 11 2017

Đáp số : 3

6 tháng 1 2015

*TH1: neu p=2 thi p+2=2+2=4(loai)

*TH2: neu p=3 thi p+2=3+2=5 va p+10=3+10=13 (chon)

  • Neu p>3 thi p khong chia het cho 3

Suy ra p chia 3 se du 1 hoac 2.

Neu p: 3 du 1 thi p=3.k+1 thi p+2=3k+3(la hop so)

                                          p+10=3k+11(la hop so)

Suy ra p=3k+1 loai

Neu p: 3 du 2 thi p=3k+2 thi p+10=3k+12(la hop so)

Suy ra p=3k+2 loai 

vay p khong the lon hon 3

Suy ra p chi co the bang 3

 

                                         

 

6 tháng 1 2015

p=3 câu hỏi dễ quá trong violimpic cũng có nên mình giải quên rùi
 

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.

21 tháng 10 2016

Xét trường hợp p=2=> p+10=12 ( ko phải là số nguyên tố)

Xét trường hợp p=3 => p+10= 13; p+14=17 ( đều là số nguyên tố)

Xét p>3 => p có 1 trong 2 dạng 3k+1 và 3k-1

+, Với p= 3k+1=>p+14=3k+1+14=3k+15 chia hết cho 3

+, Với p= 3k-1=> p-10= 3k-1+10= 3k+9 chia hết cho 3

Vậy p= 3 thì p+10 và p+14 là các số nguyên tố

Mk ms lm đc câu a, còn b để mk nghĩ tiếp

k mk nka

12 tháng 8 2015

Ta có:  

+ p=2   =>   p+2 = 2+2 = 4 (hợp số)  (loại)

+ p=3   =>   p+2 = 3+2 = 5  ;   p+10 = 3+10 = 13 (số nguyên tố) (thỏa mãn)

+ p=3k+1 (k thuộc N) => p+2 = 3k+1 + 2 = 3k +3 = 3(k+1) có ít nhất 3 ước => hợp số (loại)

+ p=3k+2 (k thuộc N) => p+10 = 3k+2+10 = 3k+12 = 3(k+4) có ít nhất 3 ước => hợp số (loại)

Vậy số nguyên tố đó là 3 thì thỏa mãn đề ra

 

12 tháng 8 2015

vì p là số nguyên tố nên sẽ có các trường hợp :

trường hợp 1 : xét p = 2

ta có : p +2 = 2 + 2 = 4 (loại)

          p+10=2+10=12 (loại)

trường hợp 2 : xét p = 3

ta có: p+2=2+3=5 (t/m)

         p+10=3+10=13 (t/m)

trường hợp 3 : nếu p > 3 thì p sẽ nhận thêm 2 trường hợp 3k+1 và 3k+2

+ Nếu p = 3k+1

ta có : p+2=3k+1+2=3k+3 chia hết cho 3 ( là hợp số , loại)

+ nếu p = 3k+2

ta có : p+10=3k+2+10=3k+12 chia hết cho 3 (là hợp số , loại)

     VẬY SỐ NGUYÊN TỐ P THÕA MÃN LÀ 3

 

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

22 tháng 11 2021

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc