Cho Tam giác ABC vuông tại A có AB = 4cm, AC = 6cm. Trên cạnh AB lấy M sao cho BM=1cm.Trên cạnh AC lấy điểm N sao cho AN =9cm.
a) CM:▲AMN~▲ABC
b,tính MN
c,tia phân giác BAC cắt BC tại H.chứng minh rằng:HB.AN=HC.AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC^2=BA^2+BC^2
=>ΔABC vuông tại B
b: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
=>góc ANM=90 độ
=>MN vuông góc AC
c: AB=AN
MB=MN
=>AM là trung trực của BN
d: CT//BN
BN vuông góc AM
=>AM vuông góc CT
Xét ΔATC có
AM,CB là đường cao
AM cắt CB tại M
=>M là trực tâm
=>TM vuông góc AC
mà MN vuông góc AC
nên T,M,N thẳng hàng
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
=>ΔBAM=ΔBDM
=>AM=DM
b: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
góc AMN=góc DMC
=>ΔMAN=ΔMDC
c: ΔMNC có MN=MC
nên ΔMCN cân tại M
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
a. Xét tam giác vuông ABC
Theo định lý Py - ta - go ta có :
AB2 + AC2 = BC2
=> 32 + AC2 = 52
=> 9 + AC2 = 25
=> AC2 = 16
=> AC = 4
Vậy AB < AC < BC
b. Xét tam giác BAM và tam giác BDM ta có :
BM chung
Góc BAM = góc BDM ( = 90 độ )
BA = BD ( gt)
=> tam giác BAM = tam giác BDM ( ch - cgv)
=> MA = MD ( hai cạnh tương ứng )
Xét tam giác AMN và tam giác DMC
góc AMN = góc DMC ( đối đỉnh )
MA = MD ( cmt)
góc MAN= góc MDC ( = 90 độ )
=> Tam giác AMN = tam giác DMC
=> MN = MC
=> Tam giác MNC cân
xét ΔABM và ΔANM, ta có :
AB = AN (gt)
\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))
AM là cạnh chung
→ ΔABM = ΔANM (c.g.c)
a: Xét ΔABM và ΔANM co
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
b: ΔABM=ΔANM
=>góc ABM=góc ANM=90 độ
=>góc NMC=90 độ-góc C=góc BAC
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
hi lo cj
e mới học lớp8 thui