Trong các số cho ở bên phải mỗi đa thức, số nào là bậc của đa thức đó?
a) 5x2 – 2x3 + x4 – 3x2 – 5x5 + 1 | –5 5 4 |
b) 15 – 2x | 15 – 2 1 |
c) 3x5 + x3 – 3x5 + 1 | 3 5 1 |
d) –1 | 1 –1 0 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x2 – 2x3 + x4 – 3x2 – 5x5 + 1 = (5x2 – 3x2) – 2x3 + x4– 5x5 + 1 = 2x2 – 2x3 + x4– 5x5 + 1
= -5x5 + x4 – 2x3 + 2x2 +1.
⇒ Bậc của đa thức là 5.
b) 15 – 2x = -2x1 +15.
⇒ Bậc của đa thức là 1.
c) 3x5 + x3 - 3x5 +1 = (3x5 – 3x5) + x3 +1 = x3 + 1.
⇒ Bậc của đa thức bằng 3.
d) Đa thức -1 có bậc bằng 0.
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
`@` `\text {Ans}`
`\downarrow`
`a)`
Thu gọn:
`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)
`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`
`= -x^5 + 5x^4 + 2x^2 + 2x - 4`
`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)
`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`
`= x^5 - x^4 - x^3 - x^2 + 7x - 2`
`@` Tổng:
`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`
`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`
`= 4x^4 - x^3 + x^2 + 9x - 6`
`@` Hiệu:
`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`
`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`
`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`
`b)`
`@` Thu gọn:
\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)
`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`
`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`
`= x^4 - 2x^3 - x^2 + 15x + 10`
\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)
`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`
`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`
`= x^4 + 3x^3 + 2x - 4`
`@` Tổng:
`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)
`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`
`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`
`= 2x^4 + x^3 - x^2 + 17x + 6`
`@` Hiệu:
`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)
`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`
`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`
`= -5x^3 - x^2 + 13x + 14`
`@` `\text {# Kaizuu lv u.}`
`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)
\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)
`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)
\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)
`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)
\(=-2x^5-2x^4-3x^3-3x^2-x-4\)
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
a)bậc của da thức 2x-5xy+3x2 là:5
b)bậc của da thức ax2+2x2 là:4
c)bậc của da thức ax3+2xy là:5
d)bậc của da thức 4y2-3y4 là:6
e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17
Trả lời câu hỏi của tôi đi. Tí tôi trả lời của bạn chings xác 100% luôn. UY TÍN BẠN NHÉ
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
a) 5x2 – 2x3 + x4 – 3x2 – 5x5 + 1 = (5x2 – 3x2) – 2x3 + x4– 5x5 + 1 = 2x2 – 2x3 + x4– 5x5 + 1
= -5x5 + x4 – 2x3 + 2x2 +1.
⇒ Bậc của đa thức là 5.
b) 15 – 2x = -2x1 +15.
⇒ Bậc của đa thức là 1.
c) 3x5 + x3 - 3x5 +1 = (3x5 – 3x5) + x3 +1 = x3 + 1.
⇒ Bậc của đa thức bằng 3.
d) Đa thức -1 có bậc bằng 0.
a 5x2-2x3+x4-3x2-5x5+1 = (5x2-3x2 ) - 2x3+x4-5x5+1 = 2x2 - 2x3 +x4-5x5+1
= -5x5+x4-2x3+2x2+1
=> bậc của đa thức là 5
b 15 - 2x = -2x1 +15
=> bậc đa thức của 1
c 3x5 + x3-3x5+1 = (3x5-3x5) + x3 +1= x3+1
=> bậc đa thức bằng 3
d đa thức -1 có bậc bằng 0
HT