1 tính nhanh:
a,215*101-213
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(101^2=\left(100+1\right)^2=10000+200+1=10201\\ 9999^2=\left(10000-1\right)^2=100000000-20000+1=99980001\\ 47\cdot53=\left(50-3\right)\left(50+3\right)=2500-9=2491\\ 991\cdot1009=\left(1000-9\right)\left(1000+9\right)=1000000-81=999919\)
a: \(101^2=10201\)
b: \(9999^2=99980001\)
c: \(47\cdot53=2491\)
d: \(991\cdot1009=999919\)
Số các số hạng trong tổng trên là: (215 - 1) : 2 + 1 = 108 (số hạng)
Tổng trên bằng: (1 + 215) x (108 : 2) = 216 x 54 = 11664
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
a, 215 x 101 - 213
= 215 x (100 + 1) - 213
= 215 x 100 + 215 - 213
= 21500 + (215 - 213)
= 21500 + 2
= 21502
215 x 101 - 213 = 215 x (100 + 1) - 200 - 13 = 215 x 100 + 215 x 1 - 200 - 13 = 21500 + 215 - 200 - 13 = 21500 + 15 - 13 = 21502
(Nhớ click cho mình với nhá!)