(x2+1)(x-1)(x+3)>0
Tìm x hộ mình nhé.Cảm ơn nhiều!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1}{x_2} = m - 7 \end{array} \right.\)
Theo đề bài, ta có: \({x_1} - {x_2} = 3\)
Từ đó ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1} - {x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = m + 2\\ {x_2} = m - 1 \end{array} \right.\)
Với giá trị trên, ta có:
\(\begin{array}{l} \left( {m + 2} \right)\left( {m - 1} \right) = m - 7\\ \Leftrightarrow {m^2} + m - 2 = m - 7\\ \Leftrightarrow {m^2} = - 5 \end{array}\)
Vậy không có giá trị $m$ thỏa mãn
x2 - (2m + 1)x + m - 7 = 0
Có: \(\Delta\) = [-(2m + 1)]2 - 4.1.(m - 7) = 4m2 + 4m + 1 - 4m + 28 = 4m2 + 29 > 0
\(\Rightarrow\) x1 = \(\dfrac{2m+1+\sqrt{\Delta}}{2}\); x2 = \(\dfrac{2m+1-\sqrt{\Delta}}{2}\)
Lại có: x1 - x2 = 3
\(\Leftrightarrow\) \(\dfrac{2m+1+\sqrt{\Delta}-2m-1+\sqrt{\Delta}}{2}=3\)
\(\Leftrightarrow\) 2\(\sqrt{\Delta}\) = 6
\(\Leftrightarrow\) \(\sqrt{\Delta}\) = 3
\(\Leftrightarrow\) \(\Delta\) = 9
\(\Leftrightarrow\) 4m2 + 29 = 9
\(\Leftrightarrow\) m2 = -5 (Vô nghiệm)
Vậy không có giá trị m nào thỏa mãn đk
Chúc bn học tốt!
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{3}=\frac{y-1}{4}=\frac{z+2}{5}=\frac{z-1+y-1+z+2}{3+4+5}=\frac{-36}{12}=-3\)
=> \(\hept{\begin{cases}\frac{x-1}{3}=-3\\\frac{y-1}{4}=-3\\\frac{z+2}{5}=-3\end{cases}}\) => \(\hept{\begin{cases}x-1=-9\\y-1=-12\\z+2=-15\end{cases}}\) => \(\hept{\begin{cases}x=-8\\x=-11\\x=-13\end{cases}}\)
Vậy ...
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
Thêm số 3 vào bên phải số trừ ta đc số bị trừ tức số bị trừ bằng 10 lần số trừ công 3
số bị trừ - số trừ = 651
10 lần số trừ +3 - số trừ = 651
9 số trừ = 648
số trừ = 72
ab3 - ab = 651
Nếu b = 2
a23 - a2 = 651
a = 7 thì:
723 - 72 = 651
Vậy:
Số Bị trừ: 723
Số Trừ: 72
\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)
\(\Leftrightarrow3m^2=1\)
\(\Leftrightarrow m^2=\dfrac{1}{3}\)
\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)
xét delta
m2 + 4m2 + 4 = 5m2 + 4 > 0
=> phương trình luôn có 2 nghiệm x1x2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\)
x12 + x22 = 3
<=> ( x1 +x2 )2 - 2x1x2 = 3
<=> m2 + 2m2 + 2 = 3
<=> 3m2 = 1
=> m2 = \(\dfrac{1}{3}\)
=> m = +- \(\dfrac{1}{\sqrt{3}}\)
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
C = \(\theta\)
D = \(\theta\)
E là tập hợp có vô số phần tử
Câu 2:
Ta có: \(x^2+17x+19⋮x+11\)
\(\Leftrightarrow x^2+11x+6x+66-47⋮x+11\)
mà \(x^2+11x+6x+66⋮x+11\)
nên \(-47⋮x+11\)
\(\Leftrightarrow x+11\inƯ\left(-47\right)\)
\(\Leftrightarrow x+11\in\left\{1;-1;47;-47\right\}\)
hay \(x\in\left\{-10;-12;36;-58\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{-10;-12;36;-58\right\}\)
\(\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)
TH1 : \(\left(x^2+1\right)=0\)
\(=>x^2=-1\)vô nghiệm
TH2 : \(\left(x-1\right)=0\)
\(=>x=1\)
TH3 : \(\left(x+3\right)=0\)
\(=>x=-3\)